Open Access
Issue |
E3S Web Conf.
Volume 165, 2020
2020 2nd International Conference on Civil Architecture and Energy Science (CAES 2020)
|
|
---|---|---|
Article Number | 03046 | |
Number of page(s) | 4 | |
Section | Geology, Mapping, and Remote Sensing | |
DOI | https://doi.org/10.1051/e3sconf/202016503046 | |
Published online | 01 May 2020 |
- Liu Xianbei. A Note on the Positive Integer Solutions of the Elliptic Curve π¦2 = π(π₯2 + 2) [J]. Journal of Xinxiang University, 2015,32(12):12-13. [Google Scholar]
- Zhang Jin. The Criterions for Elliptic Curve π¦2 = π(π₯2 + 2) Has Positive Integer Points [J]. Mathematics in Practice and Theory, 2015,45(2):232-235. [Google Scholar]
- Du Xiao-ying. The Positive Integral Points on Elliptic Curves π¦2 = π(π₯2 + 2) with π β‘ 1(πππ8) [J]. Mathematics in Practice and Theory, 2014,44(8):290-294. [Google Scholar]
- Li Min Chen. On the Diophantine Equation π¦2 = π(π₯2 + 2) [J]. Acta Mathematica Sinica, Chinese Series, 2010,53(1):83-86. [Google Scholar]
- Li Ling, Zhang Xu-xu. The integral points on the elliptic curve π¦2 = π(π₯2 + 2) [J]. Journal of Xiβan Polytechnic University, 2011,25(3):407-409. [Google Scholar]
- LIAO Si-quan, LE Mao-hua. THE POSITIVE INTEGRAL POINTS ON THE ELLIPTIC CURVE π¦2 = π(π₯2 + 2) [J]. Journal of Mathematics, 2009,29(3):387-390. [Google Scholar]
- Yin Jing-jing, GUAN Xun-gui. Integral Points on Elliptic Curve π¦2 = π(π₯2 + 2) [J]. Journal of Hebei North University (Natural Science Edition),2017,33(7):11-13. [Google Scholar]
- WAN Fei, DU Xian-cun. The Positive Integral Point on the Elliptic Curve π¦2 = π(π₯2 + 8) [J]. Journal of Qufu Normal University (Natural Science), 2018,44(1):42-44. [Google Scholar]
- Zhao Jianhong. The Integral Points on the Elliptic Curve π¦2 = π(π₯2 + 32) [J] Journal of Dezhou University,2017.33(6):20-22. [Google Scholar]
- DU Xiancun, LIN Xing, TANG Lihua. The Integral Points on the Elliptic Curve π¦2 = π(π₯2 + 32). Journal of Hubei Minzu University (Natural Science Edition), 2016. 34(04):391-393. [Google Scholar]
- Zhao Jianhong. The Positive Integral Points on the Elliptic Curve π¦2 = π(π₯2 + 32) [J] Journal of Hubei Minzu University (Natural Science Edition),2017,35(2):134-136. [Google Scholar]
- Zhao Jianhong, The Integral Points on the Elliptic Curve π¦2 = π(π₯2 + 128) *[J]. Journal of Qufu Normal University (Natural Science), 2017. 43(04):21-24. [Google Scholar]
- Zhao Jianhong. ABOUT THE POSITIVE INTEGRAL POINTS ON THE ELLIPTIC CURVE π¦2 = π(π₯2 + 128) [J]. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2017. 38(2):100-104. [Google Scholar]
- Pan Jiayu. SOME REMARKS ON THE DIOPHANTINE EQUATION π₯2 β π·π¦4 = 1 [J]. Henan Science, 1997. 15(1):7-11. [Google Scholar]
- Zhu Ping. Elementary number theory and its application in Information Science[M]. Beijing: Tsinghua University Press, 2010:86-98. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.