Open Access
E3S Web Conf.
Volume 166, 2020
The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020)
Article Number 03008
Number of page(s) 7
Section Sustainable Mining
Published online 22 April 2020
  1. M.I. Sokur, M.V. Kiianovskyi, O.M. Vorobiov et al., Dezintehratsiia mineralnykh resursiv (Disintegration of mineral resources). (Vydavnytstvo PP Shcherbatykh O.V., Kremenchuk, 2014) [Google Scholar]
  2. R. Pothina, V. Kecojevic, M.S. Klima, D. Komljenovic, Gyratory crusher model and impact parameters related to energy consumption. Mining, Metallurgy & Exploration 24, 170–180 (2007). doi:10.1007/BF03403212 [CrossRef] [Google Scholar]
  3. J.G. Donovan, Fracture Toughness Based Models for the Prediction of Power Consumption, Product Size, and Capacity of Jaw Crushers, Dissertation, Virginia Polytechnic Institute and State University, 2003 [Google Scholar]
  4. M. Silva, A. Casali, Modelling SAG milling power and specific energy consumption including the feed percentage of intermediate size particles. Minerals Engineering 70, 156–161 (2015). doi:10.1016/j.mineng.2014.09.013 [CrossRef] [Google Scholar]
  5. M.I. Sokur, V.S. Biletskyi, O.I. Yehurnov, O.M. Vorobiov, V.O. Smyrnov, D.P. Bozhyk, Pidhotovka korysnykh kopalyn do zbahachennia (Preparation of minerals for enrichment). (PP Shcherbatykh O.V., Kremenchuk, 2017) [Google Scholar]
  6. N. Sokur, V. Biletskyy, L. Sokur, D. Bozyk, I. Sokur, Investigation of the process of crushing solid materials in the centrifugal disintegrators. EasternEuropean Journal of Enterprise Technologies 3(7(81)), 34–40 (2016). doi:10.15587/17294061.2016.71983 [CrossRef] [Google Scholar]
  7. G.G. Stanley, Mechanisms in the autogenous mill and their mathematical representation. Journal of the South African Institute of Mining and Metallurgy 75, 77–98 (1974), Accessed 21 Mar 2020 [Google Scholar]
  8. S. Morrell, A new autogenous and semi-autogenous mill model for scale-up, design and optimization. Minerals Engineering 17(3), 437–445 (2004). doi:10.1016/j.mineng.2003.10.013 [CrossRef] [Google Scholar]
  9. P. Toor, M.S. Powell, M. Hilden, N.S. Weerasekara, Understanding the effects of liner wear on SAG mill performance, in MetPlant–2015, Perth, Australia. [Google Scholar]
  10. W.C. Dailey, Wet Semi-autogenous Grinding Mills, in SME–AIME Fall Meeting, Albuquerque, New Mexico. October 16–18, 1985. Society of mining engineers. Preprint No. 85–405, Accessed 10 Apr 2020 [Google Scholar]
  11. P. Toor, Quantifying the Influence of Liner Wear on SAG Mill Performance, MPhil Thesis, Sustainable Minerals Institute, The University of Queensland, 2013. doi:10.14264/uql.2014.112 [Google Scholar]
  12. D. Royston, Semi-autogenous grinding (SAG) mill liner design and development. Mining, Metallurgy & Exploration 24, 121–132 (2007). doi:10.1007/BF03403206 [CrossRef] [Google Scholar]
  13. M. Yahyaei, S. Banisi, M. Hadizadeh, Modification of SAG mill liner shape based on 3-D liner wear profile measurements. International Journal of Mineral Processing 91(3–4), 111–115 (2009). doi:10.1016/j.minpro.2009.02.002 [CrossRef] [Google Scholar]
  14. P.W. Cleary, P. Owen, D.I. Hoyer, S. Marshall, Prediction of mill liner shape evolution and changing operational performance during the liner life cycle: Case study of a Hicom mill. International Journal for Numerical Methods 81(9), 1157–1179 (2010). doi:10.1002/nme.2721 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.