Open Access
Issue
E3S Web Conf.
Volume 166, 2020
The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020)
Article Number 04007
Number of page(s) 6
Section Sustainable Energy
DOI https://doi.org/10.1051/e3sconf/202016604007
Published online 22 April 2020
  1. A.B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew. Sust. Energ. Rev. 6, 433–455 (2002) [CrossRef] [Google Scholar]
  2. Q.M. Nguyen, Ceramic Fuel Cells. J. Am. Ceram. Soc. 76, 563–588 (1993) [Google Scholar]
  3. S.M. Haile, Materials for fuel cells, Mater. Today 6, 24–29 (2003) [Google Scholar]
  4. W.Z. Zhu, S.C. Devi, Development of interconnect materials for solid oxide fuel cells. Mat. Sci. Eng. R. 348, 227–243 (2003) [CrossRef] [Google Scholar]
  5. S.C. Singhal, Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ion. 152–153, 405–410 (2002) [Google Scholar]
  6. N.M. Sammes, Y. Du, The mechanical properties of tubular solid oxide fuel cells. J. Mater. Sci. 38, 4811–4816 (2003) [Google Scholar]
  7. W.L. Lungberg, S.E. Veyo, M.D.A. Moeckel, HighEfficiency SOFC Hybrid Power System Using the Mercury 50 ATS Gas Turbine. ASME Turbo Expo 2001: Power for Land, Sea, and Air Volume 2: Coal, Biomass and Alternative Fuels; Combustion and Fuels; Oil and Gas Applications; Cycle Innovations, New Orleans, Louisiana, USA (2001) [Google Scholar]
  8. M.C. Williams, P.S. Strakey, W.A. Surdoval, L.C. Wilson, Solid oxide fuel cell technology development in the U.S., in Solid State Ionics 15: Proceedings of the 15th International Conference on Solid State Ion, Part I, 177, pp. 2039–2044 (2006) [Google Scholar]
  9. J. Mirzababaei, S.S.C. Chuang, La0.6Sr0.4Co0.2Fe0.8O3 Perovskite: A Stable Anode Catalyst for Direct Methane Solid Oxide Fuel Cells. Catalysts 4(2), 146–161 (2014). doi:10.3390/catal4020146 [Google Scholar]
  10. L. Jiang, A. B. Scott, Operation of anode-supported solid oxide fuel cells on methane and natural gas. Solid State Ion 158(1–2), 11–16 (2003) [Google Scholar]
  11. Y. Hongxin, G. Hongjie, C. Gang, A. Abuliti, D. Xinwei, The conversion among reactions at Ni-based anodes in solid oxide fuel cells with low concentrations of dry methane. J. Power Sources 196(5), 2779–2784 (2011) [Google Scholar]
  12. A.B. Marco, M.H. Josephine, Methane Electrochemical Oxidation Pathway over a Ni/YSZ and La0.3Sr0.7TiO3 Bi-Layer SOFC Anode. J. Electrochem. Soc. 159, 361 (2012) [Google Scholar]
  13. K. Nikooyeh, R. Clemmer, V. Alzate-Restrepo, J.M. Hill, Effect of hydrogen on carbon formation on Ni/YSZ composites exposed to methane. Appl. Catal. A Gen. 347, 106-111 (2008) [Google Scholar]
  14. J. Kuhn, O. Kesler, Method for in situ carbon deposition measurement for solid oxide fuel cells. J Power Sources 246, 430–437 (2014) [Google Scholar]
  15. Z. Tao, G. Hou, N. Xu, Q. Zhang, A highly cokingresistant solid oxide fuel cell with a nickel doped ceria: Ce1_xNixO2_y reformation layer. Int. J. Hydrogen Energy 3(9), 5113–5120 (2014) [Google Scholar]
  16. C. Selahattin, A. Mahmut, Experimental Investigation of Fuel Utilization in Solid Oxide Fuel Cell. OHU J. Eng. Sci. 7(2), 966–978 (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.