Open Access
Issue
E3S Web Conf.
Volume 166, 2020
The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020)
Article Number 06001
Number of page(s) 8
Section Sustainable Materials and Technologies
DOI https://doi.org/10.1051/e3sconf/202016606001
Published online 22 April 2020
  1. T. Kropyvnytska, T. Rucinska, H. Ivashchyshyn, R. Kotiv, Development of Eco-Efficient Composite Cements with High Early Strength. Lecture Notes in Civil Engineering 47, 211–218 (2020). doi:10.1007/978-3-030-27011-7_27 [CrossRef] [Google Scholar]
  2. H. Ivashchyshyn, M. Sanytsky, T. Kropyvnytska, B. Rusyn, Study of low-emission multicomponent cements with a high content of supplementary cementitious materials. Eastern-European Journal of Enterprise Technologies 4(6-100), 39–47 (2019). doi:10.15587/1729-4061.2019.175472 [CrossRef] [Google Scholar]
  3. T. Markiv, Kh. Sobol, M. Franus, W. Franus, Mechanical and durability properties of concretes incorporating natural zeolite. Archives of Civil and Mechanical Engineering 16, 554–562 (2016). doi:10.1016/j.acme.2016.03.013 [CrossRef] [Google Scholar]
  4. O. Borziak, S. Chepurna, T. Zidkova, A. Zhyhlo, A. Ismagilov, Use of a highly dispersed chalk additive for the production of concrete for transport structures. MATEC Web of Conf. 230, 03003 (2018). doi:10.1051/matecconf/201823003003 [CrossRef] [Google Scholar]
  5. J. L. Provis, Geopolymers and other alkali activated materials: why, how, and what?. Mater Struct. 47, 11–25 (2014). doi:10.1617/s11527-013-0211-5 [Google Scholar]
  6. J.L. Provis, A. Palomo, C. Shi, Advances in understanding alkali-activated materials. CEMENT CONCRETE RES. 78A, 110–125 (2015). doi:10.1016/j.cemconres.2015.04.013 [CrossRef] [Google Scholar]
  7. P. Awoyera, A. Adesina, A critical review on application of alkali activated slag as a sustainable composite binder. Case Studies in Construction Materials 11, e00268 (2011). doi:10.1016/j.cscm.2019.e00268 [CrossRef] [Google Scholar]
  8. V.V. Chistyakov, I.G. Grankovskii, V.I. Gots, Journal of applied chemistry of the USSR 59(3), 542–546 (1986) [Google Scholar]
  9. C.-L. Hwang, M.D. Yehualaw, D.-H. Vo, T.-P. Huynh, Development of high-strength alkaliactivated pastes containing high volumes of waste brick and ceramic powders. Construction and Building Materials 218, 519–529 (2019). doi:10.1016/j.conbuildmat.2019.05.143 [Google Scholar]
  10. A. Fernández-Jiménez, J.Y. Pastor, A. Martín, A. Palomo, High‐Temperature Resistance in Alkali‐Activated Cement. Journal of the American Ceramic Society 93(10), 3411–3417 (2010). doi:10.1111/j.1551-2916.2010.03887.x [CrossRef] [Google Scholar]
  11. D. Panias, E. Balomenos, K. Sakkas, The fire resistance of alkali-activated cement-based concrete binders, in Handbook of Alkali-Activated Cements, Mortars and Concretes (2015), pp. 423–461. doi:10.1533/9781782422884.3.423 [CrossRef] [Google Scholar]
  12. Y. Xie, X. Lin, T. Ji, Y. Liang, W. Pan, Comparison of corrosion resistance mechanism between ordinary Portland concrete and alkali-activated concrete subjected to biogenic sulfuric acid attack. Construction and Building Material 228, 117071 (2019). doi:10.1016/j.conbuildmat.2019.117071 [CrossRef] [Google Scholar]
  13. C. Shi, Corrosion resistance of alkali-activated slag cement. Advances in Cement Research 15(2), 77–81 (2003). doi:10.1680/adcr.2003.15.2.77 [CrossRef] [Google Scholar]
  14. O. Moskalenko, R. Runova, Ice Formation as an Indicator of Frost-Resistance on the Concrete Containing Slag Cement in Conditions of Freezing and Thawing. Materials Science Forum 865, 145–150 (2016). doi:10.4028/www.scientific.net/MSF.865.145 [CrossRef] [Google Scholar]
  15. M. Cyr, R. Pouhet, The frost resistance of alkaliactivated cement-based binders, in Handbook of Alkali-Activated Cements, Mortars and Concretes (2015), pp. 293–318. doi:10.1533/9781782422884.3.293 [CrossRef] [Google Scholar]
  16. Y. Savchuk, A. Plugin, V. Lyuty, O. Pluhin, O. Borziak, Study of influence of the alkaline component on the physico-mechanical properties of the low clinker and clinkerless waterproof compositions. MATEC Web of Conferences 230, 03018 (2018). doi:10.1051/matecconf/201823003018 [CrossRef] [EDP Sciences] [Google Scholar]
  17. V.D. Glukhovsky et al, Schelochnyie i schelochnoschelochnozemelnyie gidravlicheskie vyazhuschie i betonyi (Alkali-activated and alkaline-alkaline-earth hydraulic binders and concretes). (Vysha shkola, Kyiv, 1979) [Google Scholar]
  18. V.D. Glukhovsky et al, Shlakoschelochnyie betonyi na melkozernistyih zapolnitelyah (Alkalineactivated concretes on fine aggregates). (Vyshcha shkola, Kyiv, 1981) [Google Scholar]
  19. R.F. Runova, Yu.L. Nosovskyi, L.Y. Dvorkin, O.L. Dvorkin, Viazhuchi rechovyny (Binders). (Osnova, Kyiv, 2012) [Google Scholar]
  20. P. Awoyera, A. Adesina, Properties of Alkali Activated Slag Composites: Short Overview. Silicon 12, 987–996 (2020). doi:10.1007/s12633-01900199-1 [CrossRef] [Google Scholar]
  21. S.A. Bernal, J.L. Provis, Journal of the American Ceramic Society 97(4), 997–1008 (2014) [CrossRef] [Google Scholar]
  22. O.A. Mohamed, A Review of Durability and Strength Characteristics of Alkali-Activated Slag Concrete. Materials 12(8), 1198 (2019). doi:10.3390/ma12081198 [CrossRef] [Google Scholar]
  23. H. Ye, A. Radlińska, Effect of Alkalis on Cementitious Materials: Understanding the Relationship between Composition, Structure, and Volume Change Mechanism. Journal of Advanced Concrete Technology 15(4), 165–177 (2017). doi:10.3151/jact.15.165 [CrossRef] [Google Scholar]
  24. P. Krivenko, V. Gots, O. Petropavlovskyi, I. Rudenko, O. Konstantynovskyi, A. Kovalchuk, Development of solutions concerning regulation of proper deformations in alkali-activated cements. Eastern-European journal of Enterprise Technologies 5(6-101), 24–32 (2019). doi:10.15587/1729-4061.2019.181150 [CrossRef] [Google Scholar]
  25. P.A. Rebinder, Ye.Ye. Segalova, Ya.A. Amelina, Fiziko-himicheskie osnovyi gidratatsionnogo tverdeniya vyazhuschih veschestv (Phisicalchemical foundations of binders hydration hardening), in VI international congress on cement chemistry, book 1, vol. 2 (Stroyizdat, Moscow, 1976), pp. 58–64 [Google Scholar]
  26. Y. Turba, S. Solodkyy, T. Markiv, Strength and Fracture Toughness of Cement Concrete, Dispersedly Reinforced by Combination of Polypropylene Fibers of Two Types. Lecture Notes in Civil Engineering 47, 488–494 (2020). doi:10.1007/978-3-030-27011-7_62 [CrossRef] [Google Scholar]
  27. R.F. Runova, V.I. Gots, I.I. Rudenko, O.P. Konstantynovskyi, O.V. Lastivka, The efficiency of plasticizing surfactants in alkali-activated cement mortars and concretes. MATEC Web of Conferences 230, 03016 (2018). doi:10.1051/matecconf/201823003016 [CrossRef] [EDP Sciences] [Google Scholar]
  28. I. Rudenko, O. Konstantynovskyi, A. Kovalchuk, M. Nikolainko, D. Obremsky, Efficiency of redispersible polymer powders in mortars for anchoring application based on alkali activated Portland cements. Key Engineering Materials 761, 27–30 (2018). doi:10.4028/www.scientific.net/KEM.761.27 [Google Scholar]
  29. M. Palacios, Y.F. Houst, P. Bowen, F. Puertas, Adsorption of superplasticizer admixtures on alkaliactivated slag pastes. Cement and Concrete Research 39(8), 670–677 (2009). doi:10.1016/j.cemconres.2009.05.005 [Google Scholar]
  30. M. Najimi, N. Ghafoori, M. Sharbaf, Alkaliactivated natural pozzolan/slag binders: limitations and remediation. Magazine of Concrete Research, 1–48 (2019). doi:10.1680/jmacr.18.00184 [CrossRef] [Google Scholar]
  31. Korneev V., Danilov V., Zhidkoe i rastvorimoe steklo (Water and Soluble Glass). (Stroyizdat, SaintPetersburg, 1996) [Google Scholar]
  32. E.F. Kudina, G.G. Pechersky, O.A. Ermolovich, Issledovanie protsessa geleobrazovaniya v sistemah zhidkoe steklo-akrilamid (Investigation of gel formation in systems of water grass-polyakrylamid). Plasticheskie massy 1, 27–29 (2012) [Google Scholar]
  33. I.N. Tikhomirova, T.V. Skorina, The influence of silicate modulus of water glass on properties of cementitious materials. Stroitelnye materialy 12, 72–74 (2009) [Google Scholar]
  34. K. Chen, C.-H. Yang, Z.-D. Yu, Effect of admixture on drying shrinkage of alkali-activated slag mortar. Journal of Chongqing University 34(1), 38–40 (2011) [Google Scholar]
  35. V. Bílek, L. Pařízek, P. Kosár, J. Kratochvíl, L. Kalina, Materials Science Forum 851, 45–50 (2016) [CrossRef] [Google Scholar]
  36. V. Bilek, L Kalina, H. Simonova, Effect of curing environment on length changes of alkali-activated slag/cement kiln by-pass dust mixtures. IOP Conference Series: Materials Science and Engineering 583, 012017 (2019). doi:10.1088/1757899X/583/1/012017 [CrossRef] [Google Scholar]
  37. L. Kalina, V. Bílek, R. Novotný, M. Mončeková, J. Másilko, J. Koplík, Effect of Na3PO4 on the Hydration Process of Alkali-Activated Blast Furnace Slag. Materials 9(5), 395 (2016). doi:10.3390/ma9050395 [CrossRef] [Google Scholar]
  38. L. Kalina, V. Bílek, K. Komosná, R. Novotný, J. Tkacz, Effect of Phosphates on the Hydration Process of Alkali Activated Materials. Materials Science Forum 851, 63–68 (2016). doi:10.4028/www.scientific.net/MSF.851.63 [CrossRef] [Google Scholar]
  39. F. Pacheco-Torgal, J. Barroso de Aguirre, Y. Ding, W. Tahri, S. Baklouti, Handbook of Alkali-activated Cements, Mortars and Concretes, 1st edn. (Elsevier, 2015), pp. 627–642 [CrossRef] [Google Scholar]
  40. L. Sail, F. Ghomari, A. Khelidj, A. Bezzar, O. Benali, The effect of phosphate corrosion inhibitor on steel in synthetic concrete solutions. Advances in materials Research 2(3), 155–172 (2013). doi:10.12989/amr.2013.2.3.155 [CrossRef] [Google Scholar]
  41. S. Rajendran, Int J Nano Corr Sci and Engg. 3(4), 216–222 (2016) [Google Scholar]
  42. S.D. Meenakshi, S. Rajendran, J. Sathiyabama, R.J. Rathish, Int J Nano Corr Sci and Engg. 4(2), 1–25 (2017) [Google Scholar]
  43. J. Zhang, X. Lu, J. Zhang, L. Zhang, C. Zhu, Y. Zhang, T. Wu, Corrosion-Inhibition Effect of Different Phosphate Compounds for Carbon Steel in Chloride-Contaminated Mortars. Int. J. Electrochem. Sci. 14, 8601–8610 (2019). doi:10.20964/2019.09.29 [Google Scholar]
  44. D.M. Bastidas, M. Criado, S. Fajardo, A. La Iglesia, J.M. Bastidas, Corrosion inhibition mechanism of phosphates for early-age reinforced mortar in the presence of chlorides. Cement & Concrete Composites 61, 1–6 (2015). doi:10.1016/j.cemconcomp.2015.04.009 [Google Scholar]
  45. S.V. Samchenko, Formirovanie i genezis struktury tsementnogo kamnya (Formation and genesys of cement stone structure). (NIU MGSU, Moskva, 2016) [Google Scholar]
  46. A.G. Gelevera, Dissertation, Kyiv, 1986 [Google Scholar]
  47. J. Yang, Q. Wang, Y. Zhou, Influence of Curing Time on the Drying Shrinkage of Concretes with Different Binders and Water-to-Binder Ratios. Advances in Materials Science and Engineering 2017, 1–10 (2017). doi:10.1155/2017/2695435 [Google Scholar]
  48. Z. Jia, Y. Yang, L. Yang, Y. Zhang, Z. Sun, Construction and Building Materials 158, 198–207 (2018). doi:10.1016/j.conbuildmat.2017.09.162 [Google Scholar]
  49. P. Krivenko, O. Petropavlovskyi, I. Rudenko, O. Konstantynovskyi, A. Kovalchuk, Alkali-activated Portland cement with adjustable proper deformations for anchoring application. IOP Conference Series: Materials Science and Engineering (MSE) 708, 012090 (2019). doi:10.1088/1757-899X/708/1/012090 [CrossRef] [Google Scholar]
  50. P. Krivenko, O. Petropavlovskyi, I. Rudenko, O. Konstantynovskyi, The influence of complex additive on strength and proper deformations of alkali-activated slag cements. Materials Science Forum 968, 13–19 (2019). doi:10.4028/www.scientific.net/MSF.968.13 [CrossRef] [Google Scholar]
  51. D.M. Korotkhih, Dissertation, Voronezh, 2014 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.