Open Access
Issue |
E3S Web Conf.
Volume 166, 2020
The International Conference on Sustainable Futures: Environmental, Technological, Social and Economic Matters (ICSF 2020)
|
|
---|---|---|
Article Number | 13027 | |
Number of page(s) | 8 | |
Section | Sustainable Economy | |
DOI | https://doi.org/10.1051/e3sconf/202016613027 | |
Published online | 22 April 2020 |
- Renewables 2017: Global Status Report (REN21 Secretariat, Paris, 2017), https://www.ren21.net/wp-content/uploads/2019/05/GSR2017_FullReport_English.pdf. Accessed 10 Feb 2020 [Google Scholar]
- Renewables 2019: Global Status Report (REN21 Secretariat, Paris, 2019, https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en.pdf. Accessed 10 Feb 2020 [Google Scholar]
- D. Boyd, K. Crawford, Critical questions for big data: Provocations for a cultural, technological, and scholarly phenomenon. Inform., commun. & soc. 15, 662–679 (2012) [CrossRef] [Google Scholar]
- K. Crawford, The hidden biases in big data (Harvard Business Review, 2013), https://hbr.org/2013/04/the-hidden-biases-in-big-data. Accessed 10 Feb 2020 [Google Scholar]
- K. Desouza, B. Jacob, Big data in the public sector: lessons for practitioners and scholars. Admin. & Soc. 49, 1043–1064 (2017) [CrossRef] [Google Scholar]
- G. Kim, S. Trimi, J. Chung, Big-data applications in the government sector. Commun. of the ACM 57, 78–85 (2014) [CrossRef] [Google Scholar]
- J. Mervis, Agencies rally to tackle big data. Sc. 336, 22 (2012) [Google Scholar]
- I. Rakov, Mechanisms for financing green projects: country experience. Cur. iss. of econ. and law. 2, 67–82 (2017) [Google Scholar]
- H. Akaike, A new look at the statistical model identification. IEEE transact. on autom. cont. 6, 716–723 (1974) [CrossRef] [Google Scholar]
- G. Schwarz, Estimating the dimension of a model. The ann. of stat. 2, 461–464 (1978) [Google Scholar]
- M. Cox, D. Ellsworth, Managing big data for scientific visualization, in ACM Siggraph 97, pp. 21–38 [Google Scholar]
- C. Lynch. Big data: How do your data grow. Nat. 455, 28 (2008) [Google Scholar]
- J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A. Byers, Big data: The next frontier for innovation, competition, and productivity (McKinsey Global Institute, New York, 2011) [Google Scholar]
- J. Hill, in Fintech and the Remaking of Financial Institutions, 1st edn. (Springer, New York, 2018) [Google Scholar]
- I. Lee, Y. Shin, Fintech: Ecosystem, business models, investment decisions, and challenges. Bus. hor. 61, 35–46 (2017) [Google Scholar]
- U. Sivarajah, M. Kamal, Z. Irani, V. Weerakkody, Critical analysis of Big Data challenges and analytical methods. Journ. of Bus. Res. 70, 263–286 (2017) [CrossRef] [Google Scholar]
- J. Begenau, M. Farboodi, L. Veldkamp. Big data in finance and the growth of large firms. Journ. of Mon. Econ. 97, 71–87 (2018) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.