Open Access
E3S Web Conf.
Volume 167, 2020
2020 11th International Conference on Environmental Science and Development (ICESD 2020)
Article Number 03002
Number of page(s) 8
Section Geographic Information System
Published online 24 April 2020
  1. H.K. Bassiouny Determination of epidemiological factors causing the persistence of malaria transmission in Fayoum goveronorate, final report Alexandria, WHO Reginal Office for the Eastern Mediterranean (1996) [Google Scholar]
  2. H.K. Bassiouny, Bioenvironmental and meteorological factors related to the persistence of malaria in Fayoum goveronorate a retrosoective study. East. Medit. Health J., 7(6): 895-906 (2001). [Google Scholar]
  3. S. M. Dahesh H. I. Mostafa, Reevaluation of malaria parasites in El-Fayoum Governorate, Egypt using rapid diagnostic tests (RDTS), J. Egypt. Soc. Parasitol. (JESP), 45(3): 617–628 (2015) [CrossRef] [Google Scholar]
  4. WHO Global Malaria Programme, World Health Organization, Geneva, Switzerland (2012b). [Google Scholar]
  5. K.C. Ernst, S.O. Adoka, D.O. Kowuor, M.L. Wilson, C.C. John, Malaria hotspot areas in a highland Kenya site are consistent in epidemic and non-epidemic years and are associated with ecological factors, Malar. J. 5:78 (2006). [Google Scholar]
  6. M. Harb, (Malaria situation in Egypt. Annual report, Ministry Of Health and Population, Cairo), National project for the development of the northern Nile Valley (1995–2017), Cairo, Ministry of Planning (1994) [Google Scholar]
  7. S. El Said, J.C. Beier, M. Kenawy, Z. S. Morsy A. I. Merdan, Anopheles population dynamics in two malaria endemic villages in Faiyum Governorate, Egypt. J. Am. Mosq. Control Assoc. 2: 158-163 (1986) [Google Scholar]
  8. U. Kitron, A. Spielman Suppression of transmission of malaria through source reduction: antianopheline measures applied in Israel, the United States, and Italy. Rev. Infect. Dis. 11: 391–406 (1989) [Google Scholar]
  9. G. F. Killeen, U. Fillinger, B. G. J. Knols, Advantages of larval control for African malaria vectors: low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. Malar. J. 1, 8.10.1186/1475-2875-1-8 (2002) [Google Scholar]
  10. S. Agarwal, S. Sikarwar, D. Sukumaran, Application of RS GIS in Risk area assessment for mosquito borne diseases – a case study in a part of Gwalior City (M.P.). IJATER 2 (1) 4, (2012). [Google Scholar]
  11. R.O. Hayes, E.L. Maxwell, C.J. Mitchell, T.L. Woodzick, Detection, identification and classification of mosquito larval habitats using remote sensing scanners in earth orbiting satellites. Bull, World Health Organ. 63: 361–374 (1985) [Google Scholar]
  12. R.C. Sharma, V.K. Saxena, M. Bharadwaj. R.S. Sharma, T. Verghese, K.K. Datta, An outbreak of Japanese encephalitis in Haryana. J. Commun Dis., 23(2): 168–9 (1990) [Google Scholar]
  13. R.K. Washino, B.L. Wood, Application of remote sensing to vector arthropod surveillance and control. Am. J. Trop. Med. Hyg. 50 (6 Suppl): 134–144. (1994). [CrossRef] [PubMed] [Google Scholar]
  14. P.E. Dale, S.A. Ritchie, B.M. Territo, C.D. Morris, A. Muhar, B.H. Kay, An overview of remote sensing and GIS for surveillance of mosquito vector habitats and risk assessment, J. Vector. Ecol. 23: 54–61 (1998) [PubMed] [Google Scholar]
  15. S.I. Hay, R.W. Snow, D.J. Rogers, Predicting malaria seasons in Kenya using multi-temporal meteorological satellite sensor data, Trans. R. Soc. Trop. Med. Hyg. 92: 12–20 (1998). [CrossRef] [PubMed] [Google Scholar]
  16. S.I. Hay J.J. Lennon, Deriving meteorological variables across Africa for the study and control of vector-borne disease. A comparison of remote sensing and spatial interpolation of climate, Trop. Med. Int. Health, 4(1): 58–71 (1999) [CrossRef] [PubMed] [Google Scholar]
  17. A. Hassan, M Kenawy, H. Kamal, A. Abdel Sattar, M. Sowilem, GIS-based prediction of malaria risk in Egypt. La Revue de Santé de la Méditerranée orientale, 9 (4): 548–558 (2003) [Google Scholar]
  18. A.N. Hassan, H.M. Onsi, Remote sensing as a tool for mapping mosquito breeding habitats and associated health risk to assist control efforts and development plans: a case study in Wadi El Natroun, Egypt. J. Egypt. Soc. Parasitol., 34 (2): 367-382 (2004) [Google Scholar]
  19. L. Zou, S.N. Miller, E.T. Schmidtmann, Mosquito larval habitat mapping using remote sensing and GIS: Implications of Coalbed methane development and west Nile virus, J. Med. Entomol., 43(5): 1034-1041 (2006) [CrossRef] [PubMed] [Google Scholar]
  20. S. Kalluri, P. Gilruth, D. Rogers, M. Szczur, Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review. PLoS Pathog., 3 (10):e116 (2007) [Google Scholar]
  21. A. Hanafi-Bojd, H. Vatandoost, M. Oshaghi, Z. Charrahy, A. Haghdoost, M. Sedaghat, F. Abedi, M. Soltani, A. Raeisi, Larval habitats and biodiversity of anopheline mosquitoes (Diptera: Culicidae) in a malarious area of southern Iran. J. Vector Borne Dis. 49: 91–100 (2012) [PubMed] [Google Scholar]
  22. M. Palaniyandi, T. Mariappan, Containing the spread of malaria with geospatial tech, Geospatial World Weekly, acquired on 27 Feb. 2015, 8, (9) (2012) [Google Scholar]
  23. M. Palaniyandi, The environmental aspects of dengue and chikungunya outbreaks in India: GIS for epidemic control, Int. J. Mosq. Res. 1 (2): 35–40 (2014) [Google Scholar]
  24. M. Palaniyandi, GIS for rapid epidemiological mapping and health-care management with special reference to filariasis in India, Int. Med. Sci. Publ. Health 4 (8): 1141–1146 (2015) [CrossRef] [Google Scholar]
  25. M. M. Sowilem, Defining spatial distribution of mosquito breeding sites and areas under risk using remote sensing GIS integration. J. Biotechnol Biomater, 3 (5) 76 (2014). [Google Scholar]
  26. M. Sowilem, A. El-Zeiny, W. Atwa, M. Elshaier, A. ElHefni, Assessing and Monitoring Spatiotemporal Distribution of Mosquito Habitats, Suez Canal Zone. Asian J. Env. & Ecol., 4(2): 1-13 (2017) [CrossRef] [Google Scholar]
  27. A. El-Zeiny, A. El-Hefni, M. Sowilem, Geospatial technique for environmental modeling of breeding habitats at Suez Canal Zone, Egypt, The Egypt. J. of Remote Sensing and Space Sciences. 20: 283–293 (2017) [Google Scholar]
  28. M. J. Nelson, The role of sampling in vector control, Am. J. Trop. Med. Hyg., 50:145-150 (1994) [Google Scholar]
  29. A. Gad, A. El-Zeiny, Spatial Analysis for Sustainable Development of El Fayoum and Wadi El Natrun Desert Depressions, Egypt with the Aid of Remote Sensing and GIS, J. Geog., Env. and Earth Sci. Int. 8(3): 1-18 (2016) [CrossRef] [Google Scholar]
  30. Euroconsult, Environmental profile, Fayoum Governorate, Egypt. Al-Shorouk Press, Cairo (1992) [Google Scholar]
  31. W.F. Erian, An approach to apply the American Soil Taxonomy on some soils of Egypt. MSc thesis, Faculty of Agriculture, Cairo University, Egypt (1982) [Google Scholar]
  32. R.E. Harbach, The mosquitoes of the subgenus Culex in the southwestern Asia and Egypt (Diptera: Culicidae), Contrib. Am. Entomol. Inst. (Ann Arbor) 24, 240 (1988) [Google Scholar]
  33. J.W. Rouse, R.H. Haas, J.A. Schell, D.W. Deering, Monitoring vegetation systems in the Great Plains with ERTS. In: Third ERTS Symposium, NASA SP-351, 1: 309–317 (1973) [Google Scholar]
  34. C. Duran, Effects on drought and vegetation of topography in the Tarsus River Basin (Southern Turkey). Int. J. Hum. Sc., 12(2): 1853-1866 (2015) [Google Scholar]
  35. M. D. Shahid-Latif, Land Surface Temperature Retrieval of Landsat-8 Data Using Split Window Algorithm A Case Study of Ranchi District IJEDR, 2 (4): 3840-3849 (2014) [Google Scholar]
  36. S. S. Rashed, Survey of mosquito species in Sharkiya Governorate with special reference to population density of culicids transmitting filarial. M.Sc. Thesis, Fac. Sci. Zagazig Univ. 181 pp. (1981) [Google Scholar]
  37. A. M. Gad, M. M. Hassan, S. EI-Said, M. L. Moussa, O. L. Wood, Rift Valley fever transmission by different Egyptian mosquito species. Trans. Roy. Soc. Trop. Med. Hyg., 81:694-8 (1987) [CrossRef] [PubMed] [Google Scholar]
  38. Y. Abdel-Hamid, M.I. Soliman, K. M. Allam, Spatial distribution and abundance of culicine mosquitoes in relation to the risk of filariasis transmission in Sharkia Governorate, Egypt, Egypt. Acad. J. Biolog. Sci., 1(lE): 39-48. (2009) [Google Scholar]
  39. S.E. Ammar, M.A. Kenawy, H.A. Abd El Rahman, A.M. Gad, A.F. Hamed Ecology of the mosquito larvae in urban environments of Cairo Governorate, Egypt, J. Egypt. Soc. Parasitol., 42: 191-202 (2012) [CrossRef] [PubMed] [Google Scholar]
  40. A. Tran, C. Ippoliti, T. Balenghien, A. Conte, M. Gely, P. Calistri, M. Goffredo, T. Baldet, V. Chevalier, A geographical information system-based multicriteria evaluation to map areas at risk for Rift Valley fever vector-borne transmission in Italy, Transboundary Emerg. Dis., 60: 14–23 (2013) [CrossRef] [Google Scholar]
  41. C. Oringanje, A.A.A. Alaribe, A.O. Oduola, O.A. Oduwole, A.O. Adeogun, M.M. Meremikwu, T. S. Awolola, Vector abundance and species composition of Anopheles mosquito in Calabar, Nigeria, J. Vector Borne Dis., 48:171–173 (2011) [Google Scholar]
  42. M.R. Harb, A.M. Faris, O.N. Gad, R. Hafez, A.A. Ramzy, A.A. Buck, The resurgence of lymphatic filariasis in the Nile Delta, Bull. World Health Org., 71 (1): 49–54 (1993) [Google Scholar]
  43. R.E. Harbach, B. A. Harrison, A.M. Gad, M.A. Kenawy, S. El-Said, Records and notes on mosquitoes (Diptera: Culicidae) collected in Egypt, Mosq. Syst., 20:317-342 (1988) [Google Scholar]
  44. A.B Knudsen, R. Slooff, Vector-borne disease problems in rapid urbanization: new approaches to vector control. Bull World Health Organ, 70(1):1-6 (1992) [PubMed] [Google Scholar]
  45. M. C. Thomson, S. J. Connor, Environmental Information Systems for the control of Arthropoda vectors of diseases, Med. Vet. Entomol., 14 (3): 227-244 (2000) [Google Scholar]
  46. S. O. Vanwanbeke, P. Somboon, R. Harbach, M. Isenstadt, E. F. Lambin, C. Walton, R. K. Butlin, Landscape and land cover factors influence the presence of Aedes and Anopheles larvae, J. Med. Entomol., 44 (1): 133-144 (2007) [CrossRef] [PubMed] [Google Scholar]
  47. A. H. El Nahry, E. S. Mohamed, Potentiality of land and water resources in African Sahara: a case study of south Egypt, Envir. Earth Sci., 63 (6): 1263-1275 (2011). [CrossRef] [Google Scholar]
  48. E. S. Mohamed, Spatial assessment of desertification in north Sinai using modified MEDLAUS model. Arabian J. of Geosciences, 6 (12): 4647-4659 (2013). [Google Scholar]
  49. E. S. Mohamed, A. Belal, A. Saleh, Assessment of land degradation east of the Nile Delta, Egypt using remote sensing and GIS techniques, Arabian J. of Geosciences, 6 (8): 2843-2853 (2013). [Google Scholar]
  50. F. Amato, J. Havel, A. Gad, A. El-Zeiny, Remotely Sensed Soil Data Analysis Using Artificial Neural Networks: A Case Study of El-Fayoum Depression, Egypt, ISPRS Inter. J. of Geo-Information, 4(2): 677-696 (2015). [CrossRef] [Google Scholar]
  51. M. Abu-Hashim, E. S. Mohamed, A. E. Belal, Identification of potential soil water retention using hydric numerical model at arid regions by land-use changes, International Soil and Water Conservation Research, 3(4): 305-315 (2015). [CrossRef] [Google Scholar]
  52. M. Abu-hashim, M. Elsayed, A. E. Belal, Effect of landuse changes and site variables on surface soil organic carbon pool at Mediterranean Region, J. of Afr. Earth Sci., 114: 78-84 (2016). [CrossRef] [Google Scholar]
  53. E. S. Mohamed, A. M. Ali, M. A. El Shirbeny, A. A. El Razek, I.Y. Savin, Near infrared spectroscopy techniques for soil contamination assessment in the Nile Delta. Eurasian soil science, 49(6): 632-639 (2016) [Google Scholar]
  54. A. A. Hammam, E.S. Mohamed, Mapping soil salinity in the East Nile Delta using several methodological approaches of salinity assessment. The Egyptian Journal of Remote Sensing and Space Science, in press, (2018) [Google Scholar]
  55. E.S. Mohamed, A. Ali, M. El-Shirbeny, K. Abutaleb, S.M. Shaddad, Mapping soil moisture and their correlation with crop pattern using remotely sensed data in arid region, The Egyptian J. of Remote Sensing and Space Science, in press, (2019) [Google Scholar]
  56. E. S. Mohamed, M. AbdelRahman, B. Schütt, R. Lasaponara, Evaluating the effects of human activity over the last decades on the soil organic carbon pool using satellite imagery and GIS techniques in the Nile Delta Area, Egypt, Sustainability, 11(9), 2644 (2019) [CrossRef] [Google Scholar]
  57. M. A. AbdelRahman, A. Shalaby, E. S. Mohamed, Comparison of two soil quality indices using two methods based on geographic information system, The Egyptian J. of Remote Sensing and Space Science, 22(2): 127-136 (2019) [Google Scholar]
  58. A. M. El-Zeiny, S. F. Elbeih, GIS-Based Evaluation of Groundwater Quality and Suitability in Dakhla Oases, Egypt, Earth Syst Environ, 3(3): 507-523 (2019) [Google Scholar]
  59. A.M. El-Zeiny, H. A. Effat, Environmental analysis of soil characteristics in El-Fayoum Governorate using geomatics approach. Environ Monit Assess, 191: 463 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.