Open Access
Issue
E3S Web Conf.
Volume 167, 2020
2020 11th International Conference on Environmental Science and Development (ICESD 2020)
Article Number 05006
Number of page(s) 6
Section Renewable Energy
DOI https://doi.org/10.1051/e3sconf/202016705006
Published online 24 April 2020
  1. X. Wan, Y. Wang, D. Zhao, and Y. Huang, “A comparison of two types of neural network for weld quality prediction in small scale resistance spot welding”, Mechanical Systems and Signal Processing, vol. 93, p. 634, (2017). [Google Scholar]
  2. M. Jalili Ghazi Zade and R. Noori, “Prediction of Municipal Solid Waste Generation by Use of Artificial Neural Network: A Case Study of Mashhad”, International Journal of Environmental Research, vol. 2, pp. 13-22, (2008). [Google Scholar]
  3. E. Cérda, “Energy obtained from biomass, ” ICE economic notebooks, vol. 83, pp. 117-140, (2015). [Google Scholar]
  4. C. Ochoa. (2008). Probabilistic sampling: simple random sampling. Available: https://www.netquest.com/blog/es/blog/es/muestreo-probabilistico-muestreo-aleatorio-simple [Google Scholar]
  5. M. E. Edjabou, M. B. Jensen, R. Götze, K. Pivnenko, C. Petersen, C. Scheutz, et al., “Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation”, ELSEVIER, 2014. [Google Scholar]
  6. General Directorate of Standards, “NMX-AA-22-1985: Environmental protection Soil pollution-Municipal Solid Waste Selection and Quantification of byproducts”, vol. 22, ed. Mexico, (1992). [Google Scholar]
  7. M. A. Valencia Reyes, “Backpropagation Algorithm for Neural Networks: concepts and applications., ” Computer Research Center, National Polytechnic Institute (2007). [Google Scholar]
  8. S. Ojeda-Benítez, G. Lozano-Olvera, R. AdalbertoMorelos, and C. Armijo de Vega, “Mathematical modeling to predict residential solid waste generation”, Waste Management, vol. 8, p. 7, 2008. [CrossRef] [Google Scholar]
  9. V. M. Adamović, D. Z. Antanasijević, M. Đ.Ristić, A. A. Perić-Grujić, and V. V. Pocajt, “Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis”, Environ Sci Pollut Research, vol. 24, p. 13, (2017). [Google Scholar]
  10. P. Cardenas, “Estimation of biogas and leachate generated in final disposal sites of solid urban waste in the State of Mexico”, Professional interdisciplinary biotechnology unit, National Polytechnic Institute, Mexico, (2014). [Google Scholar]
  11. INAMHI, “Annual climatological bulletin 2015, ” INAMHI, Quito (2016). [Google Scholar]
  12. M. Diaz Piñón. How to evaluate biogas digesters. Available: http://www.cubasolar.cu/biblioteca/Energia/Energia50/HTML/Articulo07.htm [Google Scholar]
  13. E. Mode, Elements of probability and statistics. USA: Reverte, (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.