Open Access
Issue
E3S Web Conf.
Volume 168, 2020
II International Conference Essays of Mining Science and Practice
Article Number 00046
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202016800046
Published online 06 May 2020
  1. Fedorov, S.D., Oblakevich, S.V., Radiuk, O.P. (2006). The problem of utilization coal mine methane in cogeneration plants and ways to solve it on the example of the mine name by A.F. Zasiadko. Promelectro, 5, 35-39 [Google Scholar]
  2. Semenenko, Ye.V., Diakun, I.L., Ruban, V.D. (2013). Prospects for the creation and implementation of energy complexes at coal mining enterprises. Ugol Ukrainy, 7, 30-34 [Google Scholar]
  3. Semenenko Ye.V., Diakun I.L. (2014) Economic prospects for coal methane utilization. In: Prospects for the use of alternative and renewable energy sources in Ukraine, 2, 304-310 [Google Scholar]
  4. Voloshyn, O., Potapchuk, I., Yemelianenko, V., Zhovtonoha, M., Pertsevyi, V. (2019). Experimental study for the process of the borehole thermal reaming by means of the angular plasmatron. In: E3S Web of Conferences, International Conference Essays of Mining Science and Practice, 109, https://doi.org/10.1051/e3sconf/201910900113 [Google Scholar]
  5. Voloshyn, O.I., Potapchuk, I.Y., Zhevzhyk, O.V. (2018). Influence of the heat-transfer stream pressure on the surface of the rock in a process of the thermal reaming of the borehole. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 53-59 [CrossRef] [Google Scholar]
  6. Kyrychenko, Y., Samusia, V., Kyrychenko, V., Romanyukov, A. (2013). Experimental investigation of aero-hydroelastic instability parameters of the deep-water hydrohoist pipeline. Middle-East Journal of Scientific Research, 18 (4), 530-534 [Google Scholar]
  7. Kyrychenko, E., Samusya, V., Kyrychenko, V., Antonenko, A. (2015). Thermodynamics of multiphase flows in relation to the calculation of deep-water hydraulic hoisting In: New Developments in Mining Engineering: Theoretical and Practical Solutions of Mineral Resources Mining, 305-311 [CrossRef] [Google Scholar]
  8. Ilin, S.R., Samusya, V.I., Kolosov, D.L., Ilina, I.S., Ilina, S.S. (2018). Risk-forming dynamic processes in units of mine hoists of vertical shafts. Naukovyi Visnyk Natsіonalnoho Hіrnychoho Unіversitetu, (5), 64–71 [CrossRef] [Google Scholar]
  9. Pivnyak, G., Samusia, V., Oksen, Y., Radiuk, M. (2014). Parameters optimization of heat pump units in mining enterprises. In: Progressive technologies of coal, coalbed methane and ores mining, 19-24 [CrossRef] [Google Scholar]
  10. Oksen, Y., Samusia, O. (2014). Economic efficiency of heat pump technology for geothermal heat recovery from mine water. In: Progressive technologies of coal, coalbed methane, and ores mining, 191-194 [CrossRef] [Google Scholar]
  11. Pivnyak, G., Samusia, V., Oksen, Y., Radiuk, M. (2015). Efficiency increase of heat pump technology for waste heat recovery in coal mines. In: New Developments in Mining Engineering: Theoretical and Practical Solutions of Mineral Resources Mining, 1-4 [Google Scholar]
  12. Oksen, Y., Radiuk, M., Komissarov, Y., Kirsanov, M. (2019). Energy efficiency of cogeneration utilization of residual heat of flue gases during the drying of coal concentrate in pipe-dryers. In: E3S Web of Conferences, International Conference Essays of Mining Science and Practice, 109, https://doi.org/10.1051/e3sconf/201910900065 [Google Scholar]
  13. Oksen, Yu.I., and Radiuk, M.V. (2009). Investigation effectiveness of the use of waste heat gas piston installations for electricity generation, Geotekhnicheskaya Mekhanika [Geo-technical Mechanics], 81, 200-207 [Google Scholar]
  14. Oksen, Yu.I., Trofymova, Е.P, Pisarev, V.P. (2019). Study of the efficiency of conversion of waste heat of gas reciprocating plants to electrical energy. Hirnycha elektromekhanika ta avtomatyka, 101, 104-109 [Google Scholar]
  15. Oksen, Yu.I., Trofymova, O., Bobryshov, O., Lukisha, A., Pryvalov, V. (2019). Gas engines waste heat recovery to electrical energy. In: E3S Web of Conferences, International Conference Essays of Mining Science and Practice, 109, https://doi.org/10.1051/e3sconf/201910900066 [Google Scholar]
  16. Barteczko, B., Nawrat, S., Rzepski, H., Schöler, J. (2001). Wytwarzanie w skojarzeniu prądu elektrycznego, ciepła i chłodu na potrzeby podziemnej klimatyzacji KWK “Pniówek”. Ciepłownictwo, Ogrzewnictwo, Wentylacja, 32 (10), 22-27 [Google Scholar]
  17. Forrest S. Yount (2017) Fundamentals Volume Subcommittee (ASHRAE HANDBOOK COMMITTEE) [Google Scholar]
  18. Baranenko, A.V., Tymofeevskyi, L.S., Dolotov, A.H., Popov, A.V. (2005). Absorbtsionnyye preobrazovateli teploty. Sankt-Peterburg: SPbGUNiPT [Google Scholar]
  19. Galymova, L.V. (1997). Absorbtsionnyye kholodilnyye mashiny i teplovyye nasosy. Astrakhan: AGTU [Google Scholar]
  20. Byikov, A.V. (1982). Kholodilnyye mashiny: Spravochnik. Moskva: Legkaya i pischevaya promyshlennost [Google Scholar]
  21. Tseytlin, Yu.A., Abramova, T.G., Mogilevskiy, V.I., Roytman, V.F., Chernichenko, V.K. (1983). Proyektirovaniye i ekspluatatsiya shakhtnykh sistem konditsionirovaniya vozdukha. Moskva: Nedra [Google Scholar]
  22. Tseitlin, Yu.A., Oksen, Yu.I., Roitman, V.F., Mogilevsky, V.I. (1985) Optimization of design of large refrigeration systems for deep mines. Transactions of the Institution of Mining and Metallurgy (Section A: Mining industry), 94, 217-218 [Google Scholar]
  23. Oksen, Yu.I., Semeshko, E.G. (1994) The effect of stochasticity of thermophysical properties and rock temperature on the distribution of cooling power of mine air coolers. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh, 1, 87-91 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.