Open Access
E3S Web Conf.
Volume 170, 2020
6th International Conference on Energy and City of the Future (EVF’2019)
Article Number 01006
Number of page(s) 5
Section Energy and Management
Published online 28 May 2020
  1. F.A. Rodammer et K. Preston White, A recent survey of production scheduling, IEEE Transaction on Systems, Man and Cybernetics, 6-18, (1999). [Google Scholar]
  2. J. Yan, L. Li, F. Zhao, F. Zhang, Q. Zhao, A multi-level optimization approach for energy-efficient flexible flow shop scheduling, J. Cleaner Prod. 137, 1543–1552, (2016). [CrossRef] [Google Scholar]
  3. H. Luo, B. Du, G.Q. Huang, H. Chen, X. Li, Hybrid flow shop scheduling considering machine electricity consumption cost, Int. J. Prod. Econ. 146, 423–439, (2013). [Google Scholar]
  4. A.A.G. Bruzzone, D. Anghinolfi, M. Paolucci, F. Tonelli, Energy-aware scheduling for improving manufacturing process sustainability: a mathematical model for flexible flow shops, CIRP Ann. - Manuf. Technol. 61, 459–462, (2012). [CrossRef] [Google Scholar]
  5. M. Dai, D.B. Tang, A. Giret, M.A. Salido, W.D. Li, Energy-efficient scheduling for a flexible flow shop using an improved genetic-simulated annealing algorithm, Robo. Comput.-Int. Manuf. 29 (5),418–429, (2013). [CrossRef] [Google Scholar]
  6. H. Luo, D. Du, G.Q. Huang, H.P. Chen, X.L. Li, Hybrid flow shop scheduling considering machine electricity consumption cost, Int. J. Prod. Econ. 146 (2), 423–439, (2013). [Google Scholar]
  7. D.B. Tang, M. Dai, M.A. Salido, A. Giret, Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization, Comput. Ind. (30) 223–232, (2015). [Google Scholar]
  8. D.M. Lei, L. Gao, Y.L. Zheng, A novel teaching-learning-based optimization algorithm for energy-efficient scheduling in hybrid flow shop, IEEE Trans. Eng. Manag. 65 (2) 330–340, (2018). [Google Scholar]
  9. Jiang, Z., & Le, Z. Study on multi-objective flexible job-shop scheduling problem considering energy consumption. Journal of Industrial Engineering and Management (JIEM), 7(3), 589-604, (2014). [Google Scholar]
  10. Mokhtari, H., & Hasani, A. An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Computers & Chemical Engineering, 104, 339-352, (2017). [Google Scholar]
  11. Liu, G. S., Zhou, Y., & Yang, H. D. Minimizing energy consumption and tardiness penalty for fuzzy flow shop scheduling with state-dependent setup time. Journal of cleaner production, 147, 470-484, (2017). [Google Scholar]
  12. Li, J. Q., Sang, H. Y., Han, Y. Y., Wang, C. G., & Gao, K. Z. Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions. Journal of Cleaner Production, 181, 584-598, (2018). [Google Scholar]
  13. Schulz, S. A multi-criteria MILP formulation for energy aware hybrid flow shop scheduling. In Operations Research Proceedings 2016 (pp. 543-549). Springer, Cham, (2018). [CrossRef] [Google Scholar]
  14. Schulz, S., Neufeld, J. S., & Buscher, U. A multi-objective iterated local search algorithm for comprehensive energy-aware hybrid flow shop scheduling. Journal of Cleaner Production, 224, 421-434, (2019). [Google Scholar]
  15. Salido, M. A., Escamilla, J., Barber, F., Giret, A., Tang, D., & Dai, M. Energy efficiency, robustness, and makespan optimality in job-shop scheduling problems. AI EDAM, 30(3), 300-312, (2016). [Google Scholar]
  16. Wang, F., Deng, G., Jiang, T., & Zhang, S. Multi-objective parallel variable neighborhood search for energy consumption scheduling in blocking flow shops. IEEE Access, 6, 68686-68700, (2018). [Google Scholar]
  17. Guo, C., & Lei, D. Multi-objective Flexible Job Shop Scheduling Problem with Energy Consumption Constraint Using Imperialist Competitive Algorithm. In International Conference on Intelligent Computing (pp. 659-669). Springer, Cham, (2018). [Google Scholar]
  18. Zhong, L. C., Qian, B., Hu, R., & Zhang, C. S. The Hybrid Shuffle Frog Leaping Algorithm Based on Cuckoo Search for Flow shop Scheduling with the Consideration of Energy Consumption. In International Conference on Intelligent Computing (pp. 649-658). Springer, Cham, (2018). [Google Scholar]
  19. Lu, C., Gao, L., Pan, Q., Li, X., & Zheng, J. A multi-objective cellular grey wolf optimizer for hybrid flow shop scheduling problem considering noise pollution. Applied Soft Computing, 75, 728-749, (2019). [Google Scholar]
  20. Dai, M., Tang, D., Giret, A., & Salido, M. A. Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints. Robotics and Computer-Integrated Manufacturing, 59, 143-157, (2019). [Google Scholar]
  21. Li, M., Lei, D., & Cai, J. Two-level imperialist competitive algorithm for energy-efficient hybrid flow shop scheduling problem with relative importance of objectives. Swarm and Evolutionary Computation, (2019). [Google Scholar]
  22. Zhang, B., Pan, Q. K., Gao, L., Li, X. Y., Meng, L. L., & Peng, K. K. A multiobjective evolutionary algorithm based on decomposition for hybrid flow shop green scheduling problem. Computers & Industrial Engineering, 136, 325-344, (2019).. [Google Scholar]
  23. Zhou, B., & Liu, W. Energy-efficient multi-objective scheduling algorithm for hybrid flow shop with fuzzy processing time. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 0959651819827705, (2019). [Google Scholar]
  24. Jiang, S. L., & Zhang, L. Energy-Oriented Scheduling for Hybrid Flow shop With Limited Buffers Through Efficient Multi-Objective Optimization. IEEE Access, 7, 34477-34487, (2019). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.