Open Access
E3S Web Conf.
Volume 170, 2020
6th International Conference on Energy and City of the Future (EVF’2019)
Article Number 01023
Number of page(s) 7
Section Energy and Management
Published online 28 May 2020
  1. Kurtz, S., Opportunities and challenges for development of a mature concentrating photovoltaic power industry. 2012: Citeseer. [CrossRef] [Google Scholar]
  2. Friedman, D.J., et al., Toward 100 Gigawatts of concentrator photovoltaics by 2030. IEEE Journal of Photovoltaics, 2013. 3(4): p. 1460-1463. [CrossRef] [Google Scholar]
  3. Branker, K., M. Pathak, and J.M. Pearce, A review of solar photovoltaic levelized cost of electricity. Renewable and sustainable energy reviews, 2011. 15(9): p. 4470-4482. [CrossRef] [Google Scholar]
  4. Ibrahim, H. and N. Anani, Variations of PV module parameters with irradiance and temperature. Energy Procedia, 2017. 134: p. 276-285. [Google Scholar]
  5. Siddiqui, R. and U. Bajpai, Deviation in the performance of solar module under climatic parameter as ambient temperature and wind velocity in composite climate. International Journal of Renewable Energy Research, 2012. 2(3): p. 486-490. [Google Scholar]
  6. Xiao, C., et al., Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2014. 128: p. 427-434. [CrossRef] [Google Scholar]
  7. Hishikawa, Y., et al., Precise Outdoor PV Module Performance Characterization Under Unstable Irradiance. IEEE Journal of Photovoltaics, 2016. (5): p. 1221-1227. [CrossRef] [Google Scholar]
  8. Kandemir, E., N.S. Cetin, and S. Borekci, A comprehensive overview of maximum power extraction methods for PV systems. Renewable and Sustainable Energy Reviews, 2017. 78: p. 93-112. [CrossRef] [Google Scholar]
  9. Vorster, F. and E. Van Dyk, Current‐voltage characteristics of high‐concentration, photovoltaic arrays. Progress in Photovoltaics: Research and Applications, 2005. 13(1): p. 55-66. [CrossRef] [Google Scholar]
  10. Engeland, K., et al., Space-time variability of climate variables and intermittent renewable electricity production – A review. Renewable and Sustainable Energy Reviews, 2017. 79: p. 600-617. [CrossRef] [Google Scholar]
  11. Kahoul, N., et al., Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment. Renewable Energy, 2017. 109: p. 66-72. [Google Scholar]
  12. Kawagoe, K., Y. Hishikawa, and N. Yamada, Outdoor Direct STC Performance Measurement of PV Modules Based on a Sun-Shading Technique. IEEE Journal of Photovoltaics, 2017. 7(6): p. 1725-1730. [CrossRef] [Google Scholar]
  13. Lineykin, S., M. Averbukh, and A. Kuperman. Five-parameter model of photovoltaic cell based on STC data and dimensionless. in 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel. 2012. [Google Scholar]
  14. Bellia, H., R. Youcef, and M. Fatima, A detailed modeling of photovoltaic module using MATLAB. NRIAG Journal of Astronomy and Geophysics, 2014. 3(1): p. 53-61. [CrossRef] [Google Scholar]
  15. Bana, S. and R.P. Saini, A mathematical modeling framework to evaluate the performance of single diode and double diode based SPV systems. Energy Reports, 2016. 2: p. 171-187. [CrossRef] [Google Scholar]
  16. Amiry, H., et al., Design and implementation of a photovoltaic I-V curve tracer: Solar modules characterization under real operating conditions. Energy Conversion and Management, 2018. 169: p. 206-216. [Google Scholar]
  17. Warner, T.H. and C.H. Cox, I-V CURVE TRACER EMPLOYNG PARAMETRIC SAMPLNG, USA, Editor. 1984: USA. [Google Scholar]
  18. Macabebe, E.Q.B., C.J. Sheppard, and E.E. van Dyk, Parameter extraction from I–V characteristics of PV devices. Solar Energy, 2011. 85(1): p. 12-18. [CrossRef] [Google Scholar]
  19. Meyer, E.L. and E.E.v. Dyk, Assessing the reliability and degradation of photovoltaic module performance parameters. IEEE Transactions on Reliability, 2004. 53(1): p. 83-92. [Google Scholar]
  20. Rummel, S. and T. J. McMahon, Effect of cell shunt resistance on PV module performance at reduced light levels. Vol. 353. 1996: American Institute of Physics. 581-586. [Google Scholar]
  21. Tamrakar, V., S.C. Gupta, and Y. Sawle. Study of characteristics of single and double diode electrical equivalent circuit models of solar PV module. in International Conference on Energy Systems and Applications 2015. 2015. Dr. D. Y. Patil Institute of Engineering and Technology, Pune, India. [Google Scholar]
  22. Durgadevi, A., S. Arulselvi, and S.P. Natarajan. Photovoltaic modeling and its characteristics. in 2011 International Conference on Emerging Trends in Electrical and Computer Technology. 2011. [Google Scholar]
  23. Masmoudi, F., F.B. Salem, and N. Derbel. Single and double diode models for conventional mono-crystalline solar cell with extraction of internal parameters. in 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD). 2016. [Google Scholar]
  24. Ishaque, K., Z. Salam, and H. Taheri, Simple, fast and accurate two-diode model for photovoltaic modules. Solar Energy Materials and Solar Cells, 2011. 95(2): p. 586-594. [Google Scholar]
  25. Yin, O.W. and B.C. Babu, Simple and easy approach for mathematical analysis of photovoltaic (PV) module under normal and partial shading conditions. Optik, 2018. 169: p. 48-61. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.