Open Access
Issue
E3S Web Conf.
Volume 170, 2020
6th International Conference on Energy and City of the Future (EVF’2019)
Article Number 02003
Number of page(s) 5
Section Factories of Future
DOI https://doi.org/10.1051/e3sconf/202017002003
Published online 28 May 2020
  1. Enomoto, T., & Sugihara, T. Improvement of anti-adhesive properties of cutting tool by nano/micro textures and its mechanism. Procedia Engineering, 19, 100-105 (2011). [Google Scholar]
  2. Rahim, E. A., Ibrahim, M. R., Rahim, A. A., Aziz, S., & Mohid, Z. Experimental investigation of minimum quantity lubrication (MQL) as a sustainable cooling technique. Procedia CIRP, 26, 351-354 (2015). [Google Scholar]
  3. Gajrani, K. K., Suvin, P. S., Kailas, S. V., & Sankar, M. R.. Hard machining performance of indigenously developed green cutting fluid using flood cooling and minimum quantity cutting fluid. Journal of Cleaner Production, 206, 108-123 (2019). [Google Scholar]
  4. Fratila, D., and Caizar, C., “Application of Taguchi Method to Selection of Optimal Lubrication and Cutting Conditions in Face Milling of AlMg3,” J. Cleaner Prod., 19(6–7), pp. 640–645 (2011). [CrossRef] [Google Scholar]
  5. Eker, B., Ekici, B., Kurt, M., and Bakır, B. “Sustainable Machining of the Magnesium Alloy Materials in the CNC Lathe Machine and Optimization of the Cutting Conditions,” Mechanics, 20 (3), pp. 310–316 (2014). [CrossRef] [Google Scholar]
  6. Gajrani, K. K., & Sankar, M. R. Sustainable Machining with Self-Lubricating Coated Mechanical Micro-Textured Cutting Tools. In Reference Module in Materials Science and Materials Engineering. Elsevier (2018). [Google Scholar]
  7. Revuru, R. S., Posinasetti, N. R., VSN, V. R., & Amrita, M. Application of cutting fluids in machining of titanium alloys—a review. The International Journal of Advanced Manufacturing Technology, 91 (5-8), 2477-2498 (2017). [CrossRef] [Google Scholar]
  8. Borlepwar, P. T. and Patil, D. N., Recent advances in electrical discharge machining process: a review. In IVth international conference on production and industrial engineering, CPIE (2016). [Google Scholar]
  9. Bandapalli, C., Sutaria, B. M., & Bhatt, V. D., High speed machining of Ti-Alloys–A critical review. In Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013) (pp. 18-20) (2013). [Google Scholar]
  10. Sharma, A. K., Tiwari, A. K., & Dixit, A. R. Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review. Journal of Cleaner Production, 127, 1-18 (2016). [Google Scholar]
  11. Park, K. H., Suhaimi, M. A., Yang, G. D., Lee, D. Y., Lee, S. W., & Kwon, P. Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing, 18 (1), 5-14 (2017). [CrossRef] [Google Scholar]
  12. Gill, S. S., Singh, J., Singh, H., & Singh, R. Investigation on wear behaviour of cryogenically treated TiAlN coated tungsten carbide inserts in turning. International Journal of Machine Tools and Manufacture, 51 (1), 25-33 (2011). [CrossRef] [Google Scholar]
  13. R. S. Pawade, A. S. Awale, & Brahmankar, P. K. Application of Jaya Algorithm in Optimization of High Speed Turning of AISI S7 Tool Steel (2016). [Google Scholar]
  14. Khedekar, D., Gosavi, V., Gogte, C. & Brahmankar, P., Optimization of Process Parameters of Nickel– Chromium Electroplating for Thickness Variation using Genetic Algorithm. In International Conference on Communication and Signal Processing (ICCASP 2016). Atlantis Press (2016,). [Google Scholar]
  15. Shinde, R., Patil, N., Raut, D., Pawade, R. & Brahmaknakr, P., Experimental Investigations into Powder-Mixed Electrical Discharge Machining (PMEDM) of HCHCr D2 Die Steel. In International Conference on Communication and Signal Processing (ICCASP 2016). Atlantis Press (2016). [Google Scholar]
  16. Kale, S., Khedekar, D., Brahmankar, P. & Sadaiah, M., Some Investigations into the Electrical Discharge Machining of Inconel 718 Alloy using Copper and Brass Electrodes. In International Conference on Communication and Signal Processing (ICCASP 2016). Atlantis Press (2016). [Google Scholar]
  17. Kalia, S. Cryogenic processing: a study of materials at low temperatures. Journal of Low Temperature Physics, 158 (5-6), 934-945 (2010). [Google Scholar]
  18. Gill, S. S., & Singh, H. Cryogenic treatment of materials: cutting tools and polymers. In Polymers at Cryogenic Temperatures (pp. 245-273). Springer, Berlin, Heidelberg (2013). [CrossRef] [Google Scholar]
  19. Rubio, E. M., Agustina, B., Marín, M., & Bericua, A. Cooling systems based on cold compressed air: A review of the applications in machining processes. Procedia engineering, 132, 413-418 (2015). [Google Scholar]
  20. Pereira, O., Rodríguez, A., Fernández-Abia, A. I., Barreiro, J., & de Lacalle, L. L. Cryogenic and minimum quantity lubrication for an eco-efficiency turning of AISI 304. Journal of Cleaner Production, 139, 440-449 (2016). [Google Scholar]
  21. Schoop, J., Sales, W. F., & Jawahir, I. S. High speed cryogenic finish machining of Ti-6Al4V with polycrystalline diamond tools. Journal of Materials Processing Technology, 250, 1-8 (2017). [CrossRef] [Google Scholar]
  22. Pande, P. P. and Patil, N. G., Investigations into Machining of Inconel 718 by Using Adaptive Fuzzy Based Inference System. International Journal of Engineering Research, 3(5) (2014). [Google Scholar]
  23. Pusavec, F., Hamdi, H., Kopac, J., & Jawahir, I. S. Surface integrity in cryogenic machining of nickel-based alloy—Inconel 718. Journal of Materials Processing Technology, 211 (4), 773-783 (2011). [CrossRef] [Google Scholar]
  24. Pusavec, F., Deshpande, A., Yang, S., M’Saoubi, R., Kopac, J., Dillon, O. W., & Jawahir, I. S., “Sustainable Machining of High Temperature Nickel Alloy—Inconel 718: Part 1—Predictive Performance Models,” J. Cleaner Prod., 81, pp. 255–269 (2014). [CrossRef] [Google Scholar]
  25. Pusavec, F., Kramar, D., Krajnik, P., & Kopac, J., “Transitioning to Sustainable Production—Part II: Evaluation of Sustainable Machining Technologies,” J. Cleaner Prod., 18 (12), pp. 1211–1221 (2010). [CrossRef] [Google Scholar]
  26. Baisane, V., Patil, N., Lahane, S., Pawade, R. & Brahmankar, P., December. Investigations into Wire Electro-discharge Machining of A6061/Al2O3p Composites. In International Conference on Communication and Signal Processing (ICCASP 2016). Atlantis Press (2016). [Google Scholar]
  27. Bhople, N., Patil, N. and Mastud, S., The Experimental Investigations into Dry Turning of Austempered Ductile Iron. Procedia Manufacturing, 20, pp.227-232 (2018). [Google Scholar]
  28. Jadhav, S. S., Kakde, A. S., Patil, N. G. & Sankpal, J. B., Effect of cutting parameters, point angle and reinforcement percentage on surface finish, in drilling of AL6061/Al2O3p MMC. Procedia Manufacturing, 20, pp.2-11 (2018). [Google Scholar]
  29. Nizamuddin, M., Agrawal, S. M. and Patil, N., The Effect of Karanja based Soluble Cutting Fluid on Chips Formation in Orthogonal Cutting Process of AISI 1045 Steel. Procedia Manufacturing, 20, pp.12-17 (2018). [Google Scholar]
  30. Patil, N. G. & Brahmankar, P. K., Semi-empirical modeling of surface roughness in wire electro-discharge machining of ceramic particulate reinforced Al matrix composites. Procedia CIRP, 42, pp.280-285 (2016). [Google Scholar]
  31. Pawade, R. S., Joshi, S. S., Brahmankar, P. K. & Rahman, M., An investigation of cutting forces and surface damage in high-speed turning of Inconel 718. Journal of Materials Processing Technology, 192, pp.139-146 (2007). [CrossRef] [Google Scholar]
  32. Wang, Y., Li, C., Zhang, Y., Yang, M., Li, B., Jia, D., & Mao, C. Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. Journal of cleaner production, 127, 487-499 (2016). [Google Scholar]
  33. Lawal, S. A., Choudhury, I. A., & Nukman, Y. A critical assessment of lubrication techniques in machining processes: a case for minimum quantity lubrication using vegetable oil-based lubricant. Journal of Cleaner Production, 41, 210-221 (2013). [Google Scholar]
  34. Agrawal, S. M. and Patil, N. G., Experimental study of non-edible vegetable oil as a cutting fluid in machining of M2 Steel using MQL. Procedia Manufacturing, 20, pp.207-212 (2018). [Google Scholar]
  35. Gunjal S. U. and Patil N. G., Experimental investigations into turning of hardened AISI 4340 steel using vegetable based cutting fluids under minimum quantity lubrication. Procedia Manufacturing, 20, pp.18-23 (2018). [Google Scholar]
  36. S. U. Gunjal, S. B. Sanap & N. G. Patil, Role of cutting fluids under minimum quantity lubrication: An experimental investigation of chip thickness, Materials Today: Proceedings, (2020). [Google Scholar]
  37. Karkade, H. B. & Patil, N. G., Comparative investigations into high speed machining of AB titanium alloy (Ti–6al-4v) under dry and compressed Co2 gas cooling environment. In AIP Conference Proceedings (Vol. 2018, No. 1, p. 020009). AIP Publishing (2018). [CrossRef] [Google Scholar]
  38. Thakur, D. G., Ramamoorthy, B. & Vijayaraghavan, L., Influence of minimum quantity lubrication on the high speed turning of aerospace material superalloy Inconel 718. International Journal of Machining and Machinability of Materials, 13 (2-3), pp.203-214 (2013). [CrossRef] [Google Scholar]
  39. Elshwain, A. E. I., Redzuan, N., & Yusof, N. M. Machinability of nickel and titanium alloys under of gas-based coolant-lubricants (CLS)–A review. International Journal of Research in Engineering and Technology, 2(11), 690-702 (2013). [CrossRef] [Google Scholar]
  40. Jozić, S., Bajić, D., & Celent, L., “Application of Compressed Cold Air Cooling: Achieving Multiple Performance Characteristics in End Milling Process,” J. Cleaner Prod., 100, pp. 325–332 (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.