Open Access
E3S Web Conf.
Volume 170, 2020
6th International Conference on Energy and City of the Future (EVF’2019)
Article Number 03005
Number of page(s) 4
Section E-Health & Transport & Mobility
Published online 28 May 2020
  1. A. G. & P. S. Gavriel Iddan, Gavriel Meron, “Wireless capsule endoscopy,” Nature, vol. 405, no. May, pp. 417–418, (2000) [Google Scholar]
  2. A. Wang et al., “TECHNOLOGY STATUS EVALUATION REPORT: Wireless capsule endoscopy,” Gastrointest. Endosc., vol. 63, no. 4, pp. 539–45, (2013) [Google Scholar]
  3. S. E. F. De Avila, A. P. B. Lopes, A. Da Luz, and De Albuquerque Araújo, “VSUMM: A mechanism designed to produce static video summaries and a novel evaluation method,” Pattern Recognit. Lett., vol. 32, no. 1, pp. 56–68, (2011) [Google Scholar]
  4. A. Ioannidis, V. Chasanis, and A. Likas, “Weighted multi-view key-frame extraction,” Pattern Recognit. Lett., vol. 72, pp. 52–61, (2016) [Google Scholar]
  5. R. Panda, S. K. Kuanar, and A. S. Chowdhury, “Scalable video summarization using skeleton graph and random walk,” Proc. - Int. Conf. Pattern Recognit., pp. 3481–3486, (2014) [Google Scholar]
  6. J. L. Lai and Y. Yi, “Key frame extraction based on visual attention model,” J. Vis. Commun. Image Represent., vol. 23, no. 1, pp. 114–125, (2012) [Google Scholar]
  7. C. V. Sheena and N. K. Narayanan, “Key-frame Extraction by Analysis of Histograms of Video Frames Using Statistical Methods,” Procedia Comput. Sci., vol. 70, pp. 36–40, (2015) [Google Scholar]
  8. M. M. Ben Ismail, O. Bchir, and A. Z. Emam, “Endoscopy Video Summarization based on Multi-Modal Descriptors and Possibilistic Unsupervised Learning and Feature Subset Weighting,” Intell. Autom. Soft Comput., (2014) [Google Scholar]
  9. A. Z. Emam, Y. A. Ali, and M. M. Ben Ismail, “Adaptive features extraction for Capsule Endoscopy (CE) video summarization,” in Proceedings - International Conference on Computer Vision and Image Analysis Applications, ICCVIA 2015, (2015) [Google Scholar]
  10. J. Chen, Y. Zou, and Y. Wang, “Wireless capsule endoscopy video summarization: A learning approach based on Siamese neural network and support vector machine,” Proc. - Int. Conf. Pattern Recognit., pp. 1303–1308, (2016) [Google Scholar]
  11. J. Chen, Y. Wang, and Y. X. Zou, “An adaptive redundant image elimination for Wireless Capsule Endoscopy review based on temporal correlation and color-texture feature similarity,” in International Conference on Digital Signal Processing, DSP, (2015) [Google Scholar]
  12. R. Hamza, K. Muhammad, Z. Lv, and F. Titouna, “Secure video summarization framework for personalized wireless capsule endoscopy,” Pervasive Mob. Comput., vol. 41, pp. 436–450, (2017) [Google Scholar]
  13. A. Mohammed, S. Yildirim, M. Pedersen, O. Hovde, and F. Cheikh, “Sparse Coded Handcrafted and Deep Features for Colon Capsule Video Summarization,” Proc. - IEEE Symp. Comput. Med. Syst., vol. 2017-June, pp. 728–733, (2017) [Google Scholar]
  14. Koulaouzidis, D. K. Iakovidis, D. E. Yung, E. Rondonotti, U. Kopylov, J. N. Plevris, E. Toth, A. Eliakim, G. W. Johansson, W. Marlicz, and others, “KID Project: an internet-based digital video atlas of capsule endoscopy for research purposes,” Endoscopy International Open, vol. 5, no. 06, pp. E477–E483, (2017) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.