Open Access
Issue |
E3S Web Conf.
Volume 171, 2020
The 9th International Scientific-Technical Conference on Environmental Engineering, Photogrammetry, Geoinformatics – Modern Technologies and Development Perspectives (EEPG Tech 2019)
|
|
---|---|---|
Article Number | 02014 | |
Number of page(s) | 6 | |
Section | Photogrammetry, Geoinformatics | |
DOI | https://doi.org/10.1051/e3sconf/202017102014 | |
Published online | 09 June 2020 |
- M.S. Moran, Y. Inoue, Y., E.M. Barnes. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Envir. 61, 319‒346. (1997) [Google Scholar]
- N. Zhang, M. Wang, N. Wang. Precision agriculture −A worldwide overview. Comp. Electr.. Agric. 36(2–3), 113‒132. (2002). [Google Scholar]
- P.C. Robert. Precision agriculture: A challenge for crop nutrition management. Plant and Soil. 247(1), 143‒149. (2002). [Google Scholar]
- R. Gebbers, V.I. Adamchuk, V.I. Precision agriculture and food security. Science 327(5967), 828‒831. (2010). [Google Scholar]
- J.R. Irons, J.L. Dwyer, J.A. BarsiThe next Landsat satellite: The Landsat data continuity mission. Remote Sens. Envir. 122, 11‒21. (2012). [Google Scholar]
- J. Czapla-Myers, J. McCorkel, N. Anderson, R. Thome, S. Biggar, D. Helder, D. Aaron, L. Leigh, N. Mishra. The ground-based absolute radiometric calibration of Landsat 8 OLI. Remote Sens. 7, 600‒626. (2015). [Google Scholar]
- M. Drusch, U. Del Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, B. Hoersch, C. Isola, P. Laberinti, P. Martimort. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Envir. 120, 25‒36. (2012). [Google Scholar]
- J.W. Rouse, R.H. Haas, J.A. Schell, D.W. Deering. Monitoring vegetation systems in the Great Plains with ERTS. (In 3rd ERTS Symp. NASA SP-351 I, 309–317. 1973). [Google Scholar]
- J. Esper, P.V. Panetta, M. Ryschkewitsch, W. Wiscombe. NASA-GSFC Nano-satellite technology for Earth Science missions. Acta Astronaut, 46 (2–6), 287‒296. (2000). [Google Scholar]
- S. Yuval, Z.C. Xuan, C. Karine, D. Dunkerley. Sowing date detection at the field scale using CubeSats remote sensing. Comp. & Electr. Agricul. 157, 568‒580. (2019). [Google Scholar]
- D. Ichikawa, R. Wakamori. The Integrated Use of Landsat, Sentinel-2 and PlanetScope Satellite Data for Crop Monitoring. (VIGARSS IEEE International Geoscience and Remote Sens. Symposium, 2018). [Google Scholar]
- A.G. Tuzcu, N. Taskin, N. Musaoğlu. Comparison of object based machine-learning classifications of PlanetScope and WorldViev-3 satellite images for land usr/cover. (Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2/W13, 1887‒1892. 2019). [Google Scholar]
- Y. Cheng. Retrieving vegetation phenology with PlanetScope images for a semi-arid rangeland in Kenia. 1 ‒ 64. (2019). [Google Scholar]
- R. Gurdak, P. Grzybowski, P. Feasibility study of vegetation indices derived from Sentinel-2 and PlanetScope satellite images for validating the LAI biophysical parameter to monitoring development stages of winter wheat. Geoinformation, 10, 27–35. (2018) [Google Scholar]
- A.D. Baloloy, A.C. Blanco, C.G. Candido, R.G.L. Argamosa, C. Dumalag, L.L.C. Dimapilis, E.C. Paringit. Estimation of mangrove forest above- ground biomass using multispectral bands, vegetation indices and biophysical variables derived from optical satellite imageries: RapidEye, PlanetScope and Sentinel-2. (ISPRS Annals of the Photogrammetry, Remote Sens. & Spatial Inf. Sciences, IV-3, 29‒36. 2018). [Google Scholar]
- M. Gašparović, D. Medak, I.L. Pilaš Jurjević, I. Balenović. Fusion of Sentinel-2 and PlanetScope Imagery for Vegetation Detection and Monitoring. (Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-1, 155‒160. 2018) [Google Scholar]
- R. Houborg, M. McCabe M. F. High-Resolution NDVI from Planet’s Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture. Remote Sens., 8(768), 1‒19. (2016). [Google Scholar]
- Y. Shi, H. Wenjiang, Y. Huichun, R. Chao, N. Xing, Y. Geng, D.P. Yingying, P. Dailiang. Partial Least Square Discriminant Analysis Based on Normalized Two-Stage Vegetation Indices for Mapping Damage from Rice Diseases Using PlanetScope Datasets. Sensors, 18(6), 1‒16. (2018). [Google Scholar]
- N.H. Hoa. Comparison of various spectral indices for estimating mangrove covers using PlanetScope data: A case study in XUAN TYUY National Park, NAM DINH Province. J. of forestry of science and technology, 5, 74‒83. (2017) [Google Scholar]
- Planet Labs, Inc. Radiometric Calibration of the Planet Labs PlanetScope Constellation. (2018). [Google Scholar]
- Patt S.G. Chavez. Image-Based Atmospheric Corrections - Revisited and Improved. Photogram. Eng. & Remote Sens. 62(9), 1025‒1036. (1996). [Google Scholar]
- Planet Labs, Inc. Planet imagery product specification: PlanetScope & RapidEye, 32. (2018). [Google Scholar]
- N. Weisiger, J.R. Kyle, D. Bauer. Deriving a vegetation index from PlanetScope imagery. Join GitHub. (2018) [Google Scholar]
- A. Collison, N. Wilson. PLANET SURFACE REFLECTANCE PRODUCT. Planet Labs, Inc, 10. (2018). [Google Scholar]
- S.S. Kokhan. Applacation of vegetation indexes derived from satellite images IRS–1D LISS–III for determonation of crop status. Space Sciences & technology. 17(5), 58–63 (in Ukraine, 2011) [Google Scholar]
- S.S. Kokhan, S.S. Application of multispectral remotely sensed imagery in agriculture. (ISPRS Technical Commission VII Symposium. 100 Years ISPRS. Advancing Remote Sensing Science. The International Archive of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVIII. Part 7B. 337–341. 2010). [Google Scholar]
- GreenSeeker handheld crop sensor. [Google Scholar]
- Y. Kim, D.m. Glenn, j. Park, H.K. Ngugi, B.L. Lehman. Characteristics of active spectral sensor for plant sensing. (American Society of Agricultural and Biological Engineers ISSN 2151-0032 293. 55(1), 293–301. 2012). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.