Open Access
Issue
E3S Web Conf.
Volume 173, 2020
2020 5th International Conference on Advances on Clean Energy Research (ICACER 2020)
Article Number 01005
Number of page(s) 5
Section Renewable Energy and Clean Energy
DOI https://doi.org/10.1051/e3sconf/202017301005
Published online 09 June 2020
  1. Jazie, A. A., Abed, S. A., Nuhma, M. J., & Mutar, M. A. (2019). Continuous biodiesel production in a packed bed reactor from microalgae Chlorella sp. using DBSA catalyst. Engineering Science and Technology, an International Journal. [Google Scholar]
  2. Jazie, A. A. (2019). DBSA-Catalyzed Sewage Sludge Conversion into Biodiesel in a CSTR: RSM Optimization and RTD Study. Journal of Engineering & Technological Sciences, 51(4). [CrossRef] [Google Scholar]
  3. Jazie, A. A., Alshebaney, E. J., & Abed, S. A. (2019, August). In-Situ Dodecylbenzenesulfonic acidCatalyzed Transesterification of Micro Algae Chlorella Sp. for Biodiesel Production. In 2019 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET) (pp. 1-6). IEEE. [Google Scholar]
  4. Kumar, V., and Nigam, K. D. P. 2012. Process intensification in green synthesis. Green Processing and Synthesis. 1:79-107. [CrossRef] [Google Scholar]
  5. Yeh, S. I., Huang, Y. C., Cheng, C. H., Cheng, C. M., & Yang, J. T. (2016). Development of a millimetrically scaled biodiesel transesterification device that relies on droplet-based co-axial fluidics. Scientific reports, 6. [PubMed] [Google Scholar]
  6. Jazie, A. A., Abed, S. A., & Pramanik, H. (2019, August). DBSA-Catalyzed Biodiesel Production From Sewage Sludge In A Micro-Reactor: Box-Behnken Design Optimization. In 2019 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET) (pp. 1-6). IEEE [Google Scholar]
  7. Qiu, Z., Zhao, L., and Weatherley, L. 2010. Process intensification technologies in continuous biodiesel production. Chemical Engineering and Processing: Process Intensification. 49:323-330. [CrossRef] [Google Scholar]
  8. Hessel, V., Vural Gürsel, I., Wang, Q., Noel, T., and Lang, J. 2012. Potential analysis of smart flow processing and micro process technology for fastening process development: use of chemistry and process design as intensification fields. Chemical Engineering & Technology. 35:1184-1204. [Google Scholar]
  9. Budžaki, S., Miljić, G., Tišma, M., Sundaram, S., and Hessel, V. 2017. Is there a future for enzymatic biodiesel industrial production in microreactors?. Applied Energy. 201:124-134. [Google Scholar]
  10. Fischmeister, C., and Doucet, H. 2011. Greener solvents for ruthenium and palladium-catalysed aromatic C–H bond functionalisation. Green Chemistry. 13:741-753. [CrossRef] [Google Scholar]
  11. Wegner, J., Ceylan, S., & Kirschning, A. (2011). Ten key issues in modern flow chemistry. Chemical Communications, 47(16), 4583-4592. [CrossRef] [Google Scholar]
  12. Azam, N. A. M., Uemura, Y., Kusakabe, K., and Bustam, M. A. 2016. Biodiesel Production from Palm Oil Using Micro Tube Reactors: Influences of Catalyst Concentration and Residence Time. Procedia Engineering. 148:354-360. [Google Scholar]
  13. Jamil, M. F., Uemura, Y., Kusakabe, K., Ayodele, O. B., Osman, N., Ab Majid, N. M. N., and Yusup, S. 2016. Transesterification of Mixture of Castor Oil and Sunflower Oil in Millichannel Reactor: FAME Yield and Flow Behaviour. Procedia Engineering. 148:378-384. [Google Scholar]
  14. Santana, H. S., Tortola, D. S., Reis, É. M., Silva, J. L., and Taranto, O. P. 2016. Transesterification reaction of sunflower oil and ethanol for biodiesel synthesis in microchannel reactor: Experimental and simulation studies. Chemical Engineering Journal. 302:752-762. [CrossRef] [Google Scholar]
  15. Chueluecha, N., Kaewchada, A., and Jaree, A. 2017. Enhancement of biodiesel synthesis using co-solvent in a packed-microchannel. Journal of Industrial and Engineering Chemistry. 51:162-171. [CrossRef] [Google Scholar]
  16. Yuvarani, M., Kubendran, D., Salma Aathika, A. R., Karthik, P., Premkumar, M. P., Karthikeyan, V., & Sivanesan, S. (2017). Extraction and characterization of oil from macroalgae Cladophora glomerata. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-7. F. De Lillo, F. Cecconi, G. Lacorata, A. Vulpiani, EPL, 84 (2008). [Google Scholar]
  17. Oyelade, J. O., Idowu, D. O., Oniya, O. O., and Ogunkunle, O. 2017. Optimization of biodiesel production from sandbox (Hura crepitans L.) seed oil using two different catalysts. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 39: 1242-1249. [CrossRef] [Google Scholar]
  18. Mansourpoor, M., and Shariati, A. 2012. Optimization of biodiesel production from sunflower oil using response surface methodology. J Chem Eng Process Technol. 3:4. [CrossRef] [Google Scholar]
  19. Yao, J., Ji, L., Sun, P., Zhang, L., & Xu, N. (2010). Low boiling point organic amine-catalyzed transesterification of cottonseed oil to biodiesel with trace amount of KOH as co-catalyst. Fuel, 89(12), 3871-3875. [CrossRef] [Google Scholar]
  20. Cao, F., Chen, Y., Zhai, F., Li, J., Wang, J., Wang, X., ... and Zhu, W. 2008. Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid. Biotechnology and bioengineering. 101:93-100. [CrossRef] [PubMed] [Google Scholar]
  21. Miao, X., Li, R., and Yao, H. 2009. Influenceive acidcatalyzed transesterification for biodiesel production. Energy Conversion and Management. 50:2680-2684. [Google Scholar]
  22. Ab Rashid, W., Norita, W., Uemura, Y., Kusakabe, K., Osman, N. B., and Abdullah, B. 2014. Biodiesel Production from Palm Oil in a Millichannel Reactor. In Applied Mechanics and Materials. 465:232-236. [Google Scholar]
  23. Rahimi, M., Aghel, B., Alitabar, M., Sepahvand, A., and Ghasempour, H. R. 2014. Optimization of biodiesel production from soybean oil in a microreactor. Energy Conversion and Management. 79:599-605. [Google Scholar]
  24. Encinar, J. M., Pardal, A., and Sánchez, N. 2016. An improvement to the transesterification process by the use of co-solvents to produce biodiesel. Fuel. 166:51-58. [CrossRef] [Google Scholar]
  25. Wu, L., Huang, K., Wei, T., Lin, Z., Zou, Y., & Tong, Z. (2016). Process intensification of NaOH-catalyzed transesterification for biodiesel production by the use of bentonite and co-solvent (diethyl ether). Fuel, 186, 597-604. [CrossRef] [Google Scholar]
  26. Lam, M. K., and Lee, K. T. 2010. Accelerating transesterification reaction with biodiesel as cosolvent: A case study for solid acid sulfated tin oxide catalyst. Fuel. 89:3866-3870. [CrossRef] [Google Scholar]
  27. Kusdiana, D., and Saka, S. 2004. Influences of water on biodiesel fuel production by supercritical methanol treatment. Bioresource technology. 91:289-295. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.