Open Access
Issue
E3S Web Conf.
Volume 178, 2020
High Speed Turbomachines and Electrical Drives Conference 2020 (HSTED-2020)
Article Number 01027
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202017801027
Published online 09 July 2020
  1. F. Weizhong, The research on design and technology of new high efficiency supercritical unit – a kind of cross-compound steam turbine generator unit in a manner of elevated and conventional layout, Proceedings of the 2-nd IEA CCC Workshop on Advanced Ultras-Supercritical Coal-Fired Power Plants, Rome, Italy (2014) [Google Scholar]
  2. S. Martin, B. Forrest, N. Rafati, X. Lu, J. Fetvedt, M. McGroddy, D. Freed, Progress update on the Allam cycle: commercialization of NET Power and the NET Power Demonstration Facility, Proceeedings of the 14-th Greenhouse Gas Control Technologies Conference, Melbourne, Australia (2018) [Google Scholar]
  3. A.B. Amato, P.D. Hudak, D. Carlo, D. Noble, J. Scarborough, T. Seitzman, T. Lieuwen, Methane oxy-combustion for low CO2 cycles: Blowoff measurements and analysis, Journal of Engineering for Gas Turbines and Power 133, 6 (2011) [Google Scholar]
  4. S. Suzuki, Y. Iwai, M. Itoh, Y. Morisawa, P. Jain, Y. Kobayashi, High pressure combustion test of gas turbine combustor for 50MWth supercritical CO2 demonstration power plant on Allam cycle, Proceedings of the International Gas Turbine Congress, Tokyo, Japan (2019) [Google Scholar]
  5. A. Alenezi, J.S. Kapat, Thermodynamic analysis of CO2 Allam cycle for concentrated solar power complemented with oxy-combustion, Proceedings of AIAA Propulsion and Energy Forum, Indianapolis, Indiana, USA (2019) [Google Scholar]
  6. I.L. Polezhaev, V. Yu, Normal flame propagation speed and analysis of the influence of system parameters on it, Thermophysics of high temperatures 43, 6, 933–942 (2005) [Google Scholar]
  7. E.L. Petersen, M. Röhrig, D.F. Davidson, R.K. Hanson, C.T. Bowman, High-pressure methane oxidation behind reflected shock waves, Proceedings of the Symposium (International) on Combustion 26, 1, 799–806 (1996) [CrossRef] [Google Scholar]
  8. A.H. Lefebvre, Gas turbine combustion: Alternative fuels and emissions (Boca Raton: CRC Press, 557, 2010) [Google Scholar]
  9. G. Kim, Y. Kim, Y.J. Joo, Conditional moment closure for modeling combustion processes and structure of oxy-natural gas flame, Energy & Fuels 23, 9, 4370–4377 (2009) [CrossRef] [Google Scholar]
  10. B.T. Chorpening, K.H. Casleton, G.A. Richards, M. Woike, B. Willis, Stoichiometric oxy-fuel combustion for power cycles with CO2 sequestration, Proceedings of the 3-rd Joint Meeting of the US Sections of the Combustion Institute, Chicago, Illinois, USA (2003) [Google Scholar]
  11. S. Coogan, X. Gao, A. McClung, W. Sun, Evaluation of kinetic mechanisms for direct fired supercritical oxy-combustion of natural gas, Proceedings of the Turbomachinery Technical Conference and Exposition, Seoul, South Korea (2016) [Google Scholar]
  12. V.P. Zhukov, V.A. Sechenov, A.Y. Starikovskii, Spontaneous ignition of methane-air mixtures in a wide range of pressures, Combustion, Explosion and Shock Waves 39, 5, 487–495 (2003) [CrossRef] [Google Scholar]
  13. M.D. Smooke, Reduced kinetic mechanisms and asymptotic approximations for methane-air flames: A topical volume (Berlin: SpringerVerlag, 245, 1991) [Google Scholar]
  14. N. Slavinskaya, M. Braun-Unkhoff, P. Frank, Reduced reaction mechanisms for methane and syngas combustion in gas turbines, Journal of Engineering for Gas Turbines and Power 130, 2, 021504 (2008) [Google Scholar]
  15. H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, C.K. Law, USC Mech Version II, High-temperature combustion reaction model of H2/CO/C1-C4 compounds (2007) [Electronic resource]. Available at: http://ignis.usc.edu/Mechanisms/USC-Mech%20II/USC_Mech%20II.htm [Google Scholar]
  16. D. Healy, D.M. Kalitan, C.J. Aul, E.L. Petersen, G. Bourque, H.J. Curran, Oxidation of C1-C5 alkane quinternary natural gas mixtures at high pressures, Energy & Fuels 24, 3, 1521–1528 (2010) [CrossRef] [Google Scholar]
  17. X. Gao, S. Yang, W. Sun, A global pathway selection algorithm for the reduction of detailed chemical kinetic mechanisms, Combustion and Flame, 167, 238–247 (2016) [Google Scholar]
  18. A. Frassoldati, T. Faravelli, E. Ranzi, The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures, Note 1: Detailed kinetic modeling of syngas combustion also in presence of nitrogen compounds, International Journal of Hydrogen Energy 32, 15, 3471–3485 (2007) [Google Scholar]
  19. W.P. Fan, Y. Gao, Y.M. Zhang, C.L. Chow, W.K. Chow, Experimental studies and modeling on flame velocity in turbulent deflagration in an open tube, Process Safety and Environmental Protection 129, 291–307 (2019) [CrossRef] [Google Scholar]
  20. G. Gai, S. Kudriakov, B. Rogg, A. Hadjadj, E. Studer, O. Thomine, Numerical study on laminar flame velocity of hydrogen-air combustion under water spray effects, International Journal of Hydrogen Energy 44, 31, 17015–17029 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.