Open Access
Issue
E3S Web Conf.
Volume 179, 2020
2020 International Conference on Environment and Water Resources Engineering (EWRE 2020)
Article Number 02027
Number of page(s) 9
Section Environmental and Industrial Design
DOI https://doi.org/10.1051/e3sconf/202017902027
Published online 23 July 2020
  1. Zheng Jie. Principles and Practice of NLP Chinese Natural Language Processing [M]. Beijing: Electronic Industry Press, 2017. [Google Scholar]
  2. Salton G. A vector space model for automatic indexing [J]. Communications of the Acm, 1974 18 (11): 613-620. [Google Scholar]
  3. CUI W. A chinese text classification system based on naive bayes algorithm [C] // MATEC Web of Conferences. 2016: 1015. [Google Scholar]
  4. ZHANG M.Y, AI X.B, HU YZ. Chinese text classification system on regulatory information based on SVM [C] // IOP Conference Series: Earth and Environmental Science. 2019: 252. [Google Scholar]
  5. SAHA D. Web text classification using a neural network [C] // 2011 Second International Conference on, 2011. [Google Scholar]
  6. Lei Fei. Text classification and its application based on neural network and decision tree [D]. Chengdu: University of Electronic Science and Technology, 2018. [Google Scholar]
  7. Ding Shengchun, Wang Xiaoying, Liu Menglu. Classification of Internet public opinion topics based on ontology and weighted naive Bayes [J]. Modern Information, 2018 38 (8): 12-17. [Google Scholar]
  8. Jia Longjia, Zhang Bangzuo. Research on the topic classification method in the network public opinion security of colleges and universities--Taking Sina Weibo data as an example [J]. Data Analysis and Knowledge Discovery, 2018 (7): 55-62. [Google Scholar]
  9. Zubiaga, A., Aker, A., Bontcheva, K., Liakata, M., & Procter, R. (2018). Detection and Resolution of Rumours in Social Media. ACM Computing Surveys, 51 (2), 1-36. [CrossRef] [Google Scholar]
  10. Zong Qianjin, Huang Zifeng, Shen Hongzhou. Research on rumors and rumors of social media users based on gender perspective [J]. Modern Intelligence, 2017 37 (7): 25-29, 34. [Google Scholar]
  11. Jiang Ying, Zhang Jing, Zhu Lingxuan, et al .. Network rumor text sentence feature analysis and monitoring system [J]. Electronic Design Engineering, 2017 25 (23): 7-10, 15. [Google Scholar]
  12. Mikolov T., Sutskever I., Chen K., et al. Distributed Representations of Words and Phrases and their Compositionality [J]. Advances in Neural Information Processing Systems, 2013: 3111-3119. [Google Scholar]
  13. KIM Y. Convolutional neural networks for sentence classi- fication [C] / / Proceedings of the 2014 Conference on Em- pirical Methods in Natural Language Processing. Doha: EMNLP, 2014: 1746-1751. [Google Scholar]
  14. Liao Xiangwen, Huang Zhi, Yang Dingda, Cheng Xueqi, Chen Guolong. Social media rumors detection based on layered attention network [J]. Science in China: Information Science, 2018 48 (11): 1558-1574. [Google Scholar]
  15. Zhiwei Jin, Juan Cao, Han Guo, Yongdong Zhang, Jiebo Luo: Multimodal Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs. ACM Multimedia 2017: 795-816. [Google Scholar]
  16. Yang Z., Yang D., Dyer C., etal. Hierarchical attention networks for document classification [C] // Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016: 1480- 1489. [Google Scholar]
  17. Devlin J., Chang MW, Lee K., et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding [C] // Proceedings of the 2019 Conference of the North American Chapter of the Association for Com- putational Linguistics : Human Language Technologies, Volume 1 (Long and Short Papers), 2019: 4171-4186. [Google Scholar]
  18. Nicholas DiFonzo and Prashant Bordia. 2007. Rumor, gossip and urban legends. Diogenes 54, 1 (2007), 19–35. [Google Scholar]
  19. Guoyong Cai, Hao Wu, and Rui Lv. 2014. Rumors detection in chinese via crowd responses. In Proceedings of the 2014 IEEE / ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM’14). IEEE, 912 –917. [Google Scholar]
  20. Ding Haiyan. The government’s strategy to deal with online rumors [D]. Guangzhou University, 2013. [Google Scholar]
  21. Miao Junfu, Shao Wen. Looking at the psychological mechanism of gossip from the salt robbing farce [J]. Journal of Qilu Teachers College, 2011 26 (05): 25-27. [Google Scholar]
  22. Tian Xiaorui, Wang Danchen, Dong Anbang-Research on Public Crisis Information Dissemination Mechanism under the Influence of Psychological Stress [J]. Library and Information Work, 2014 58 (2): 59-65 [Google Scholar]
  23. Allport, G.W. & Postman, L. (1947). The Psychology of Rumor. NewYork: HenryHolt. [Google Scholar]
  24. Prasad J. The psychology of rumour: A study relating to the great Indian earthquake of 1934 [J]. British Journal of Psychology. General Section, 1935 26 (1): 1-15. [Google Scholar]
  25. Chorus, A. The basic law of rumor [J]. The Journal of Abnormal and Social Psychology, 1953 48 (2): 313-314. [CrossRef] [Google Scholar]
  26. Anthony, S. Anxiety and rumor. Journal of Social Psychology. 1973, 89, 91-98. [CrossRef] [Google Scholar]
  27. Hu Yu. Mass Communication Effect: Problems and Countermeasures [M]. Beijing: Xinhua Publishing House, 2000. [Google Scholar]
  28. Kuang Wenbo, Guo Yufeng. “The Spread and Resolution of Rumors in the Age of Weibo-Taking the” 7.23 “Yongwen Line High-speed Railway Accident as an Example”, “International Press”, 2012, Issue 2, pages 64-69 [Google Scholar]
  29. Wu Jian, Ma Chao. Rumor spread formula, traceability + revision and development [J]. Journalism. 2015 (13): 20-23. [Google Scholar]
  30. Yuan Hui, Xie Yungeng. Research on the rumors of Internet rumors of public events——Based on the content analysis of 118 public events Internet rumors with greater influence [J]. Journalist, 2015 (05): 58-65. [Google Scholar]
  31. Wang Qian, Yu Feng. Improvement and verification of the rumor spreading formula of Allport and Postman: Analysis of rumors of Sina Weibo based on the casualties caused by Siberian tigers [J]. International Press. , 2017 39 (11): 47-67. [Google Scholar]
  32. Jin Xuan, Zhao Yuxian. Analysis of Internet rumors from the perspective of co-governance——WeChat platform rumors governance practice [J]. News and Writing, 2017 (6): 41-44 [Google Scholar]
  33. Wang Xiaoli, Zhao Laijun, Wu Zhong. Rumor propagation model considering rumor dispelling mechanism in non-uniform network [J]. System Engineering, 2015 33 (12): 139-145. [Google Scholar]
  34. Yu Guoming. “Weibo rumors” is a false proposition [N]. China Economic Times, 2012-01-06 (012). [Google Scholar]
  35. Wang Guohua, Wu Dan, Wang Ge, et al. Research on False News Communication from the Perspective of Frame Theory——Based on the “Content Analysis of Shanghai Girl Escape from Jiangxi Rural Metallurgical Event [J]. Information Magazine, 2016, 35 (6) : 56-64. [Google Scholar]
  36. Tong Wensheng, Yi Baihui. Internet rumors: domestic research progress and theoretical analysis framework [J / OL]. Information Magazine: 1-8. [Google Scholar]
  37. Tang Xuemei, Lai Shengqiang. Research on the Government ‘s Strategies for Dispelling Internet Rumors in Emergencies——Taking the Taifu Middle School Incident as an Example [J]. Information Magazine, 2018 37 (9): 95-99 [Google Scholar]
  38. Yao Qi, Cui Lijuan, Wang Yan, Yang Ying. The influence of social media trust on the autonomy of public network rumors in major public health emergencies [J]. Psychological Science, 2020 43 (02): 481-487. [Google Scholar]
  39. Jin Jianbin, Jiangsu Jia, Yang Hongyan. Socialized collaborative repelling rumors: actor network and operating mechanism [J]. News and Writing, 2019 (8): 33-39. [Google Scholar]
  40. Li Biao, Yu Guoming. “Study on the Discourse Space and Dissemination Field of Internet Rumors in the Post-truth Era ———— Based on the Analysis of 4160 Rumours on WeChat Circle of Friends [J]. News University, 2018 (2): 103 112. [Google Scholar]
  41. Yu Guoming. Text structure and expression characteristics of online rumors——Analysis of 6000+ rumors based on Tencent big data screening and identification [J]. News and Writing, 2018 (02): 53-59. [Google Scholar]
  42. Wang Fang, Lian Zhixuan. Calculation of rumor truth degree in public crisis and its confrontation with positive information [J]. Library and Information, 2020 (01): 34-50. [Google Scholar]
  43. Duan Dandan, Tang Jiashan, Wen Yong, Yuan Kehai. Research on Chinese short text classification algorithm based on BERT [J / OL]. Computer Engineering: 1-12. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.