Open Access
Issue
E3S Web Conf.
Volume 180, 2020
9th International Conference on Thermal Equipments, Renewable Energy and Rural Development (TE-RE-RD 2020)
Article Number 04011
Number of page(s) 9
Section Miscellaneous
DOI https://doi.org/10.1051/e3sconf/202018004011
Published online 24 July 2020
  1. K. Kussk, J. Kurnitski and T. Kalamees, Calculation and compliance procedures of thermal bridges in energy calculations in various European countries, Energy Proc. J. 132: 27-32, (2017) [CrossRef] [Google Scholar]
  2. A. Papadopoulos, Forty years of regulations on the thermal performance of the building envelope in Europe: achievements, perspectives and challenges, Energy Build. 127, (2016) [CrossRef] [PubMed] [Google Scholar]
  3. ISO 10211, Thermal Bridges in Building Construction Heat Flows and Surface Temperatures. Detailed calculations, Int. Org. for Standardization, (2017) [Google Scholar]
  4. H. Erhorn-Kluttig, H. Erhorn, Impact of thermal bridges on the energy performance of buildings, Paper P148 of the EPBD Buildings Platform, files/content/P_148_EN_ASIEPI_WP4_IP2.pdf., (2009) www.buildup.eu/sites/default/ [Google Scholar]
  5. T. Theodosiou, A. Papadopoulos, The impact of thermal bridges on the energy demand of buildings with double brick wall constructions J. Energy and Build. 40: 2083–2089, Elsevier, DOI:10.1016/j.enbuild.2008.06.006, (2008) [CrossRef] [Google Scholar]
  6. K. Martin, A. Erkoreka, I. Flores, M. Odriozola and J.M. Sala, Problems in the calculation of thermal bridges in dynamic conditions, J. Energy and Build. 43: 529–535, Elsevier, DOI:10.1016/j.enbuild.2010.10.018, (2011) [CrossRef] [Google Scholar]
  7. T. Theodosiou, K. Tsikaloudaki, S. Tsoka and P. Chastas, Thermal bridging problems on advanced cladding systems and smart building facades, J. of Cleaner Prod. 214: 62-69, Elsevier, DOI:10.1016/j.jclepro.2018.12.286, (2019) [CrossRef] [Google Scholar]
  8. M. Ivanov, Instantaneous field measurements of thermal bridge parameters in ground floor residential room, Proc. “8th Int. Conf. on Thermal Equip., Ren. Energy and Rural Dev. TE-RE-RD 2019”, Web of Conf., doi: 10.1051/e3sconf/201911201016, (2019) [Google Scholar]
  9. M. Ivanov, Dew point temperature analyses in ground floor residential room with existing thermal bridge, Proc. “8th Int. Conf. on Thermal Equip., Ren. Energy and Rural Dev. TE-RE-RD 2019”, Web of Conf., doi: 10.1051/e3sconf/201911201017, (2019) [Google Scholar]
  10. S. Taoum, E. Lefrançois, Dual analysis for heat exchange: Application to thermal bridges, J. Comp. and Math. with App. 75: 3471–3487, Elsevier, (2018) [CrossRef] [Google Scholar]
  11. H. Ge, F. Baba, Effect of dynamic modelling of thermal bridges on the energy performance of residential buildings with high thermal mass for cold climates, J. Sustain. Cities and Soc. 34: 250–263, Elsevier, (2017) [Google Scholar]
  12. A. Terziev, Specifics in numerical modelling of flow past a square-cylinder, Proc. of Sc. Conf. of Ruse University “Angel Kanchev, vol. 53, book 1.2: 143-149, ISSN 13113321, (2014) [Google Scholar]
  13. Launder B. E., Spalding D. B., The Numerical Computation of Turbulent Flow, Comp. Methods in Applied Mech. and Eng., 3:269-289, (1974) [CrossRef] [Google Scholar]
  14. Jayatilleke C., The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sublayer to Momentum and Heat Transfer, Prog. Heat Mass Transfer, 1:193-321, (1969) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.