Open Access
Issue
E3S Web Conf.
Volume 181, 2020
2020 5th International Conference on Sustainable and Renewable Energy Engineering (ICSREE 2020)
Article Number 03006
Number of page(s) 6
Section Power and Energy Engineering
DOI https://doi.org/10.1051/e3sconf/202018103006
Published online 24 July 2020
  1. Kawady, T. A., Mansour, N. M., & Taalab, A. I. (2010). Wind farm protection systems: state of the art and challenges. Distributed Generation, 265–288. [Google Scholar]
  2. Qiu, Y., Feng, Y., & Infield, D. (2020). Fault diagnosis of wind turbine with SCADA alarms based multidimensional information processing method. Renewable Energy, 145, 1923–1931. [Google Scholar]
  3. Vittal, V., McCalley, J., Ajjarapu, V., & Shanbhag,U. V. (2009). Impact of increased DFIG wind penetration on power systems and markets. PSERC publication, 9. [Google Scholar]
  4. Hansen, A. D., Cutululis, N. A., Markou, H., Sørensen, P. E., & Iov, F. (2010). Grid fault and design-basis for wind turbines-Final report. [Google Scholar]
  5. Lopes, J. A. P., de Vasconcelos, M. H. O. P., Santos, R. L., & Fonseca, J. (1999). Estudos de impacto eléctrico da integração de produção eólica adicional nas redes eléctricas da República de Cabo Verde: caso de Santiago. Proceedings ELAB 99. [Google Scholar]
  6. Chakraborty, A., Kumar, S., Tudu, B., & Mandai, K. K. (2017, December). Analyzing the dynamic behavior of a DFIG-based wind farm under sudden grid disturbances. In 2017 international conference on intelligent sustainable systems (ICISS) (pp. 336–341). IEEE. [Google Scholar]
  7. Dhouib, B., Kahouli, A., & Abdallah, H. H. (2017, March). Dynamic behavior of grid-connected fixed speed wind turbine based on proportional-integral pitch controller and fault analysis. In 2017 International Conference on Green Energy Conversion Systems (GECS) (pp. 1–7). IEEE. [Google Scholar]
  8. Erlich, I., Wrede, H., & Feltes, C. (2008). Dynamic behaviour of DFIG-based wind turbines during grid faults. IEEJ Transactions on Industry Applications, 128(4), 396–401. [CrossRef] [Google Scholar]
  9. Adouni, A., Chariag, D., Diallo, D., Delpha, C., & Sbita, L. (2017, October). Statistical analysis of current-based features for dip voltage fault detection and isolation. In IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society (pp. 4350–4354). IEEE. [Google Scholar]
  10. Amin, I. K., Uddin, M. N., Hannan, M. A., & Alam, A. Z. (2019, May). Adaptive Neuro-Fuzzy Controller for Grid Voltage Dip Compensations of Grid Connected DFIG-WECS. In 2019 IEEE International Electric Machines & Drives Conference (IEMDC) (pp. 2101–2106). IEEE. [Google Scholar]
  11. Gururaj, M. V., & Padhy, N. P. (2018, August). Fault Ride Through Analysis of Grid Connected Doubly Fed Induction Generator Based Wind System. In 2018 IEEE Power & Energy Society General Meeting (PESGM) (pp. 1–5). IEEE. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.