Open Access
Issue
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
Article Number 01065
Number of page(s) 6
Section Energy Engineering and Power System
DOI https://doi.org/10.1051/e3sconf/202018501065
Published online 01 September 2020
  1. Abate A, Saliba M, Hollman D J, et al. Supramolecular Halogen Bond Passivation of Organic–Inorganic Halide Perovskite Solar Cells[J]. Nano Letters, 2014, 14(6):3247–3254. [CrossRef] [PubMed] [Google Scholar]
  2. Dong, Wei, Hao, et al. Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air.[J]. Nanoscale, 2019, 23(002):105–146. [Google Scholar]
  3. Milic J V, Im J H, Kubicki D J, et al. Supramolecular Engineering for Formamidinium-Based Layered 2D Perovskite Solar Cells: Structural Complexity and Dynamics Revealed by Solid-State NMR Spectroscopy[J]. Advanced energy materials, 2019, 9(20):1900284.1–1900284.12. [Google Scholar]
  4. Song J, Bian J, Zheng E, et al. Efficient and Environmentally Stable Perovskite Solar Cells Based on ZnO Electron Collection Layer[J]. Chemistry Letters, 2015, 44(5):610–612. [Google Scholar]
  5. Saygili Y, Turren-Cruz S H, Olthof S, et al. Planar Perovskite Solar Cells with High Open-Circuit Voltage Containing a Supramolecular Iron Complex as Hole Transport Material Dopant[J]. Chemphyschem, 2018,56(13):87–109. [Google Scholar]
  6. Li M, Li Y, Sasaki S I, et al. Dopant-Free Zinc Chlorophyll Aggregates as an Efficient Biocompatible Hole Transporter for Perovskite Solar Cells[J]. Chemsuschem, 2016, 27(018):32–54. [Google Scholar]
  7. Ion-Migration Inhibition by the Cation-π Interaction in Perovskite Materials for Efficient and Stable Perovskite Solar Cells[J]. Advanced Materials, 2018, 30(31):1707583.1–1707583.10. [Google Scholar]
  8. Ladder-like conjugated polymers used as hole- transporting materials for high-efficiency perovskite solar cells[J]. Journal of Materials Chemistry A, 2019, 7(005):44–57. [Google Scholar]
  9. Emilio, Jose, Palomares, 等. Supramolecular Coordination of Pb2+ Defects in Hybrid Lead Halide Perovskite Films Using Truxene Derivatives as Lewis Base Interlayers.[J]. Chemphyschem A European Journal of Chemical Physics & Physical Chemistry, 2019,5(002):143–186. [Google Scholar]
  10. Liu D, Kelly T L. Perovskite solar cells with a planar heterojunction structure prepared using room- temperature solution processing techniques[J]. Nature Photonics, 2013, 8(2):133–138. [Google Scholar]
  11. You J, Hong Z, Yang Y, et al. Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility[J]. Acs Nano, 2014, 8(2):1674–1680. [Google Scholar]
  12. Hao F, Stoumpos C C, Cao D H, et al. Lead-free solid-state organic–inorganic halide perovskite solar cells[J]. Nature Photonics, 2014, 8(6):489–494. [Google Scholar]
  13. Wanyi, Nie, Hsinhan,等. Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains.[J]. Science, 2015, 7(3):274–288. [Google Scholar]
  14. Wojciechowski K, Saliba M, Leijtens T, et al. Sub- 150 ℃ processed meso-superstructured perovskite solar cells with enhanced efficiency[J]. Energy & environmental science, 2014, 7(3):1142–1147. [Google Scholar]
  15. Kim H S, Park N G. Correction to “Parameters Affecting I – V Hysteresis of CH 3 NH 3 PbI 3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO 2 Layer”[J]. Journal of Physical Chemistry Letters, 2014, 5(17):2927–2934. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.