Open Access
Issue
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
Article Number 01072
Number of page(s) 4
Section Energy Engineering and Power System
DOI https://doi.org/10.1051/e3sconf/202018501072
Published online 01 September 2020
  1. L. Dong, S. Han, W. Yu, Z. Lei, S. Kang, K. Zhang, J. Yan, Z. Li, H. Shui, Z. Wang, S. Ren, C. Pan, of tar from pyrolysis of Shenhua bituminous coal, Journal of Analytical and Applied Pyrolysis, 140 (2019) 321–330. [Google Scholar]
  2. H. Shui, D. Zou, H. Wu, F. He, X. Wang, C. Pan, Z. Wang, Z. Lei, S. Ren, S. Kang, C. Chunbao Xu, Co- liquefaction of Xilinguole lignite and lignin in ethanol/water solvents under a cheap iron ore catalyst, Fuel, 251 (2019) 629–635. [Google Scholar]
  3. Y. Li, S. Huang, S. Wu, Y. Wu, J. Gao, Co- pyrolysis of lignite and vacuum residue: Product distribution and hydrogen transfer, Fuel, 263 (2020) 116703. [CrossRef] [Google Scholar]
  4. R.W. Coughlin, F. Davoudzadeh, Lignin depolymerizes coal at 300 °C, Nature, 303 (1983) 789–791. [Google Scholar]
  5. D.K. Park, S.D. Kim, S.H. Lee, J.G. Lee, Co- pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor, Bioresource Technology, 101 (2010) 6151–6156. [CrossRef] [PubMed] [Google Scholar]
  6. H. Haykiri-Acma, S. Yaman, Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis, Fuel, 86 (2007) 373–380. [CrossRef] [Google Scholar]
  7. N. Kashimura, J.-i. Hayashi, C.-Z. Li, C. Sathe, T. Chiba, Evidence of poly-condensed aromatic rings in a Victorian brown coal, Fuel, 83 (2004) 97–107. [Google Scholar]
  8. A.G. Collot, Y. Zhuo, D.R. Dugwell, R. Kandiyoti, Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidised bed reactors, Fuel, 78 (1999) 667–679. [CrossRef] [Google Scholar]
  9. Y.G. Pan, E. Velo, L. Puigjaner, Pyrolysis of blends of biomass with poor coals, Fuel, 75 (1996) 412–418. [CrossRef] [Google Scholar]
  10. M.L. Poutsma, Free-radical thermolysis and hydrogenolysis of model hydrocarbons relevant to processing of coal, Energy & Fuels, 4 (1990) 113–131. [CrossRef] [Google Scholar]
  11. S.B.L.C.B.M.B.A.A. Jongwon Kim, Coliquefaction of Coal and Black Liquor to Environmentally Acceptable Liquid Fuels, Energy Sources, 21 (1999) 839–847. [CrossRef] [Google Scholar]
  12. H. Zhang, B. Dou, H. Zhang, J. Li, C. Ruan, C. Wu, Study on non-isothermal kinetics and the influence of calcium oxide on hydrogen production during bituminous coal pyrolysis, Journal of Analytical and Applied Pyrolysis, 150 (2020) 104888. [Google Scholar]
  13. I. Mian, X. Li, Y. Jian, O.D. Dacres, M. Zhong, J. Liu, F. Ma, N. Rahman, Kinetic study of biomass pellet pyrolysis by using distributed activation energy model and Coats Redfern methods and their comparison, Bioresource Technology, 294 (2019) 122099. [CrossRef] [PubMed] [Google Scholar]
  14. H.B. Vuthaluru, Thermal behaviour of coal/biomass blends during co-pyrolysis, Fuel Processing Technology, 85 (2004) 141–155. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.