Open Access
Issue
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
Article Number 03007
Number of page(s) 5
Section Medical Biology and Medical Signal Processing
DOI https://doi.org/10.1051/e3sconf/202018503007
Published online 01 September 2020
  1. A. Collins, D. Brodie, R. Gilbert, et al. The interaction properties of costimulatory molecules revisited. Immunity, 17(2), 201–10 (2002) [CrossRef] [PubMed] [Google Scholar]
  2. H. Bour-Jordan, H. Esensten, M. Martinez-Llordella, et al. Intrinsic and extrinsic control of peripheral T- cell tolerance by costimulatory molecules of the CD28/B7 family. Immunol Rev, 241(1),180–205 (2011) [CrossRef] [PubMed] [Google Scholar]
  3. K. Wing, Y. Onishi, P. Prieto-Martin, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science, 322(5899), 271–5 (2008) [Google Scholar]
  4. H. Baumeister, J. Freeman, G. Dranoff, et al. Coinhibitory Pathways in Immunotherapy for Cancer. Annu Rev Immunol, 34, 539–73 (2016) [CrossRef] [PubMed] [Google Scholar]
  5. J. Selby, J. Engelhardt, M. Quigley, et al. Anti- CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res, 1(1), 32–42 (2013) [CrossRef] [PubMed] [Google Scholar]
  6. E. Sato, H. Olson, J. Ahn, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A, 102(51), 18538–43 (2005) [CrossRef] [PubMed] [Google Scholar]
  7. C. Friese, K. Harbst, H. Borch, et al. CTLA-4 blockade boosts the expansion of tumor-reactive CD8(+) tumor-infiltrating lymphocytes in ovarian cancer. Sci Rep, 10(1), 3914 (2020) [CrossRef] [PubMed] [Google Scholar]
  8. S. Hodi, J. O’day, F. Mcdermott, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med, 363(8), 711–23 (2010) [Google Scholar]
  9. C. Robert, L. Thomas, I. Bondarenko, et al.Ipilimumab plus Dacarbazine for Previously Untreated Metastatic Melanoma. New England Journal of Medicine, 364(26), 2517–2526 (2011) [CrossRef] [PubMed] [Google Scholar]
  10. A. Ribas, R. Kefford, A. Marshall, et al. Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. J Clin Oncol, 31(5), 616–22 (2013) [CrossRef] [PubMed] [Google Scholar]
  11. A. Schnell, L. Bod, A. Madi, et al. The yin and yang of co-inhibitory receptors: toward anti-tumor immunity without autoimmunity. Cell Res (2020). [Google Scholar]
  12. H. June, T. Warshauer, A. Bluestone. Corrigendum: Is autoimmunity the Achilles’ heel of cancer immunotherapy?. Nat Med, 23(8), 1004 (2017) [Google Scholar]
  13. M. Michot, C. Bigenwald, S. Champiat, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer, 54, 139–148 (2016) [CrossRef] [PubMed] [Google Scholar]
  14. T. Okazaki, S. Chikuma, Y. Iwai, et al. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol, 14(12), 1212–8 (2013) [PubMed] [Google Scholar]
  15. D. Blackburn, H. Shin, N. Haining, et al.Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol, 10(1), 29–37 (2009) [CrossRef] [PubMed] [Google Scholar]
  16. M. Terme, E. Ullrich, L. Aymeric, et al. IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res, 71(16), 5393–9 (2011) [Google Scholar]
  17. R. Bellucci, A. Martin, D. Bommarito, et al.Interferon-gamma-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression. Oncoimmunology, 4(6), e1008824 (2015) [Google Scholar]
  18. V. Velu, K. Titanji, B. Zhu, et al. Enhancing SIV- specific immunity in vivo by PD-1 blockade. Nature, 458(7235), 206–10 (2009) [CrossRef] [PubMed] [Google Scholar]
  19. M. Francisco, H. Salinas, E. Brown, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med, 206(13), 3015–29 (2009) [CrossRef] [PubMed] [Google Scholar]
  20. E. Keir, J. Butte, J. Freeman, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol, 26, 677–704 (2008) [Google Scholar]
  21. M. Gibbons, X. Liu, V. Pulko, et al. B7-H1 limits the entry of effector CD8(+) T cells to the memory pool by upregulating Bim. Oncoimmunology, 1(7),1061–1073 (2012) [CrossRef] [PubMed] [Google Scholar]
  22. W. Xu, B. Atkins, F. Mcdermott. Checkpoint inhibitor immunotherapy in kidney cancer. Nat Rev Urol, 17(3), 137–150 (2020) [CrossRef] [PubMed] [Google Scholar]
  23. F. Mcdermott, J-L. Lee, C. Szczylik, et al. Pembrolizumab monotherapy as first-line therapy in advanced clear cell renal cell carcinoma (accRCC): Results from cohort A of KEYNOTE-427. Journal of Clinical Oncology, 36(15_suppl), 4500–4500 (2018) [CrossRef] [Google Scholar]
  24. F. Mcdermott, A. Sosman, M. Sznol, et al. Atezolizumab, an Anti-Programmed Death-Ligand 1 Antibody, in Metastatic Renal Cell Carcinoma: Long-Term Safety, Clinical Activity, and Immune Correlates From a Phase Ia Study. J Clin Oncol, 34(8), 833–42 (2016) [CrossRef] [PubMed] [Google Scholar]
  25. C. Robert, J. Schachter, V. Long, etal. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med, 372(26), 2521–32. (2015) [Google Scholar]
  26. F. Triebel, S. Jitsukawa, E. Baixeras, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med, 171(5), 1393–405 (1990) [CrossRef] [PubMed] [Google Scholar]
  27. B. Huard, P. Gaulard, F. Faure, et al. Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class II ligand. Immunogenetics, 39(3), 213–7 (1994) [CrossRef] [PubMed] [Google Scholar]
  28. P. Andrews, H. Yano, A. Vignali. Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups. Nat Immunol, 20(11), 1425–1434 (2019) [PubMed] [Google Scholar]
  29. P. Andrews, E. Marciscano, G. Drake, et al. LAG3 (CD223) as a cancer immunotherapy target. Immunol Rev, 276(1), 80–96 (2017) [CrossRef] [PubMed] [Google Scholar]
  30. E. Baixeras, B. Huard, C. Miossec, et al. Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J Exp Med, 176(2), 327–37 (1992) [CrossRef] [PubMed] [Google Scholar]
  31. J. Wang, F. Sanmamed, I. Datar, et al. Fibrinogen- like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3. Cell, 176(1-2), 334-347.e12 (2019) [Google Scholar]
  32. B. Huard, R. Mastrangeli, P. Prigent, et al. Characterization of the major histocompatibility complex class II binding site on LAG-3 protein. Proc Natl Acad Sci U S A, 94(11), 5744–9 (1997) [CrossRef] [PubMed] [Google Scholar]
  33. C. Brignone, M. Gutierrez, F. Mefti, et al. First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. J Transl Med, 8, 71 (2010) [CrossRef] [PubMed] [Google Scholar]
  34. P. Cottu, V. D’hondt, S. Dureau, etal. LBA9Letrozole and palbociclib versus 3rd generation chemotherapy as neoadjuvant treatment of minal breast cancer. Results of the UNICANCER-eoPAL study. Annals of Oncology, 28(suppl_5) (2017) [Google Scholar]
  35. M. Kraman, N. Fosh, K. Kmiecik, et al. Abstract 2719: Dual blockade of PD-L1 and LAG-3 with FS118, a unique bispecific antibody, induces CD8+ T-cell activation and modulates the tumor microenvironment to promote antitumor immune responses. Cancer Research, 78(13 Supplement), 2719–2719 (2018) [Google Scholar]
  36. A. Veillette, J. Chen. SIRPalpha-CD47 Immune Checkpoint Blockade in Anticancer Therapy. Trends Immunol, 39(3), 173–184 (2018) [CrossRef] [PubMed] [Google Scholar]
  37. N. Barclay, K. Van Den Berg. The interaction between signal regulatory protein alpha (SIRPalpha) and CD47: structure, function, and therapeutic target. Annu Rev Immunol, 32, 25–50 (2014) [CrossRef] [PubMed] [Google Scholar]
  38. K. Tsai, E. Discher. Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J Cell Biol, 180(5),989–1003 (2008) [CrossRef] [PubMed] [Google Scholar]
  39. A. Veillette, Z. Tang. Signaling Regulatory Protein (SIRP)alpha-CD47 Blockade Joins the Ranks of Immune Checkpoint Inhibition. J Clin Oncol, 37(12),1012–1014 (2019) [CrossRef] [PubMed] [Google Scholar]
  40. I. Sikic, N. Lakhani, A. Patnaik, et al. First-in- Human, First-in-Class Phase I Trial of the Anti- CD47 Antibody Hu5F9-G4 in Patients With Advanced Cancers. J Clin Oncol, 37(12), 946–953 (2019) [CrossRef] [PubMed] [Google Scholar]
  41. R. Advani, I. Flinn, L. Popplewell, et al. CD47 Blockade by Hu5F9-G4 and Rituximab in Non- Hodgkin’s Lymphoma. N Engl J Med, 379(18),1711–1721 (2018) [Google Scholar]
  42. P. Cabrales. RRx-001 Acts as a Dual Small Molecule Checkpoint Inhibitor by Downregulating CD47 on Cancer Cells and SIRP-α on Monocytes/Macrophages. Transl Oncol, 12(4), 626–632 (2019) [PubMed] [Google Scholar]
  43. F. Chen, Z. Zou, J. Du, et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J Clin Invest, 129(5), 2056–2070 (2019) [CrossRef] [PubMed] [Google Scholar]
  44. C. Nonomura, M. Otsuka, R. Kondou, et al. Identification of a neoantigen epitope in a melanoma patient with good response to anti-PD-1 antibody therapy. Immunol Lett, 208, 52–59 (2019) [CrossRef] [PubMed] [Google Scholar]
  45. N. Mcgranahan, C. Swanton. Neoantigen quality, not quantity. Sci Transl Med, 2019, 11(506). [Google Scholar]
  46. H. June, S. O’connor, U. Kawalekar, et al. CAR T cell immunotherapy for human cancer. Science, 359(6382), 1361–1365 (2018) [Google Scholar]
  47. M. Messaoudene, P. Mourikis, J. Michels, et al. T- cell bispecific antibodies in node-positive breast cancer: novel therapeutic avenue for MHC class I loss variants. Ann Oncol, 30(6), 934–944 (2019) [CrossRef] [PubMed] [Google Scholar]
  48. I. Koopmans, D. Hendriks, F. Samplonius, et al. A novel bispecific antibody for EGFR-directed blockade of the PD-1/PD-L1 immune checkpoint. Oncoimmunology, 7(8), e1466016 (2018) [CrossRef] [PubMed] [Google Scholar]
  49. H. Chang, Y. Wang, R. Li, et al. Combination Therapy with Bispecific Antibodies and PD-1 Blockade Enhances the Antitumor Potency of T Cells. Cancer Res, 77(19), 5384–5394 (2017) [Google Scholar]
  50. S. Pai, M. Simons, X. Lu, et al. Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related toxicity. J Clin Invest, 129(1), 349–363 (2019) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.