Open Access
Issue |
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
|
|
---|---|---|
Article Number | 03029 | |
Number of page(s) | 9 | |
Section | Medical Biology and Medical Signal Processing | |
DOI | https://doi.org/10.1051/e3sconf/202018503029 | |
Published online | 01 September 2020 |
- L. Sjoberg, B. Karlsson, A.R. Atti, et al. J Affect Disord. Prevalence of depression: Comparisons of different depression definitions in population-based samples of older adults, 221, 123–131(2017) [Google Scholar]
- C. Menard, G.E. Hodes, S.J. Russo, Neuroscience. Pathogenesis of depression: Insights from human and rodent studies, 321, 138–162(2016) [Google Scholar]
- L. Chang, M. Karin, Nature. Mammalian MAP kinase signalling cascades, 410(6824), 37–40(2001) [Google Scholar]
- M. Guha, N. Mackman, Cell Signal. LPS induction of gene expression in human monocytes, 13(2),85–94 (2001) [Google Scholar]
- D.T. Ho, A.J. Bardwell, M. Abdollahi, et al. J Biol Chem. A docking site in MKK4 mediates high affinity binding to JNK MAPKs and competes with similar docking sites in JNK substrates, 278(35), 32662–72(2003) [Google Scholar]
- A.E. Matitau, T.V. Gabor, R.M. Gill, et al. J Biol Chem, MEKK2 kinase association with 14-3-3 protein regulates activation of c-Jun N-terminal kinase, 288(39),28293–302(2013) [Google Scholar]
- E. Alvarez, I.C. Northwood, F.A. Gonzalez, et al. J Biol Chem Pro-Leu-Ser/Thr-Pro is a consensus primary sequence for substrate protein phosphorylation. Characterization of the phosphorylation of c-myc and c-jun proteins by an epidermal growth factor receptor threonine 669 protein kinase, 266(23),15277–85(1991) [Google Scholar]
- S. Gupta, T. Barrett, A.J. Whitmarsh, et al. EMBO J. Selective interaction of JNK protein kinase isoforms with transcription factors, 15(11),2760-70(1996) [Google Scholar]
- T.C. Whisenant, D.T. Ho, R.W. Benz, et al. PLoS Comput Biol. Computational prediction and experimental verification of new MAP kinase docking sites and substrates including Gli transcription factors, 6(8) (2010). [Google Scholar]
- J.P. Li, Y.N. Fu, Y.R. Chen, et al. J Biol Chem. JNK pathway-associated phosphatase dephosphorylates focal adhesion kinase and suppresses cell migration, 285(8),5472–8(2010) [Google Scholar]
- C.Y. Yang, J.P. Li, L.L. Chiu, et al. J Immunol. Dual-specificity phosphatase 14 (DUSP14/MKP6) negatively regulates TCR signaling by inhibiting TAB1 activation, 192(4),1547–57(2014) [Google Scholar]
- M.M. Fu, E.L. Holzbaur, J Cell Biol. JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors, 202(3),495–508 (2013) [Google Scholar]
- T. Satake, K. Otsuki, Y. Banba, et al. BMC Cell Biol. The interaction of Kinesin-1 with its adaptor protein JIP1 can be regulated via proteins binding to the JIP1-PTB domain, 14,12(2013) [Google Scholar]
- K.A. Schachter, Y. Du, A. Lin, et al. J Biol Chem. Dynamic positive feedback phosphorylation of mixed lineage kinase 3 by JNK reversibly regulates its distribution to Triton-soluble domains, 281(28),19134–44(2006) [Google Scholar]
- Z. Lu, Y. Miao, I. Muhammad, et al. Chem Biol Interact. Colistin-induced autophagy and apoptosis involves the JNK-Bcl2-Bax signaling pathway and JNK-p53-ROS positive feedback loop in PC-12 cells, 277,62–73(2017) [Google Scholar]
- X. Chen, C. Liu, R. Zhao, et al. Mol Pharm. Synergetic and Antagonistic Molecular Effects Mediated by the Feedback Loop of p53 and JNK between Saikosaponin D and SP600125 on Lung Cancer A549 Cells, 15(11),4974–4984(2018) [Google Scholar]
- S. Wang, H. Li, S. Weng, et al. iScience. White Spot Syndrome Virus Establishes a Novel IE1/JNK/c-Jun Positive Feedback Loop to Drive Replication, 23(1),100752(2019) [Google Scholar]
- M. Solas, G. Gerenu, F.J. Gil-Bea, et al. J Neuroendocrinol. Mineralocorticoid receptor activation induces insulin resistance through c-Jun N-terminal kinases in response to chronic corticosterone: cognitive implications, 25(4),350–6 (2013) [Google Scholar]
- J. Zhang, W. Lin, M. Tang, et al. Psychoneuroendocrinology. Inhibition of JNK ameliorates depressive-like behaviors and reduces the activation of pro-inflammatory cytokines and the phosphorylation of glucocorticoid receptors at serine 246 induced by neuroinflammation, 113,104580(2019) [Google Scholar]
- G. Sabio, R.J. Davis, Semin Immunol. TNF and MAP kinase signalling pathways, 26(3), 237–45(2014) [Google Scholar]
- B. Zhang, M. Li, L. Chen, et al. Cell Res. The TAK1-JNK cascade is required for IRF3 function in the innate immune response, 19(4),(2009) 412–28(2009) [Google Scholar]
- J. Meng, D.M. Wang, L.L. Luo, Biomed Pharmacother. CTRP3 acts as a novel regulator in depressive-like behavior associated inflammation and apoptosis by meditating p38 and JNK MAPK signaling, 120, 109489 (2019) [Google Scholar]
- M. Spiliotaki, V. Salpeas, P. Malitas, et al. Psychoneuroendocrinology. Altered glucocorticoid receptor signaling cascade in lymphocytes of bipolar disorder patients, 31(6), 748–60(2006) [Google Scholar]
- T.R. Bomfim, L. Forny-Germano, L.B. Sathler, et al. J Clin Invest. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Abeta oligomers, 122(4), 1339–53(2012) [Google Scholar]
- M.S. Han, D.Y. Jung, C. Morel, et al. Science. JNK expression by macrophages promotes obesity- induced insulin resistance and inflammation, 339(6116), 218–22(2013) [Google Scholar]
- J. Lanuza-Masdeu, M.I. Arevalo, C. Vila, et al. Diabetes. In vivo JNK activation in pancreatic beta- cells leads to glucose intolerance caused by insulin resistance in pancreas, 62(7), 2308–17(2013) [Google Scholar]
- A. Ammendrup, A. Maillard, K. Nielsen, et al. Diabetes. The c-Jun amino-terminal kinase pathway is preferentially activated by interleukin-1 and controls apoptosis in differentiating pancreatic beta- cells, 49(9), 1468–76(2000) [Google Scholar]
- E.T. Uchoa, P.B. Marangon, R. Rorato, et al. J Endocrinol. Adrenalectomy impairs insulin-induced hypophagia and related hypothalamic changes, 242(2), 125–138 (2019) [Google Scholar]
- S. Vernia, J. Cavanagh-Kyros, T. Barrett, et al. Genes Dev. Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway, 27(21), 2345–55(2013) [Google Scholar]
- J.M. Kyriakis, P. Banerjee, E. Nikolakaki, et al. Nature. The stress-activated protein kinase subfamily of c-Jun kinases, 369(6476), 156–60(1994) [Google Scholar]
- N. Galeotti, C. Ghelardini, Int J Neuropsychopharmacol. Regionally selective activation and differential regulation of ERK, JNK and p38 MAP kinase signalling pathway by protein kinase C in mood modulation, 15(6), 781–93 (2012) [Google Scholar]
- S.G. Rosa, A.P. Pesarico, C.W. Nogueira. Prog Neuropsychopharmacol Biol Psychiatry. m- Trifluoromethyl-diphenyl diselenide promotes resilience to social avoidance induced by social defeat stress in mice: Contribution of opioid receptors and MAPKs, 82, 123–135(2018) [Google Scholar]
- A.G. Toshniwal, S. Gupta, L. Mandal, et al. Dev Cell. ROS Inhibits Cell Growth by Regulating 4EBP and S6K, Independent of TOR, during Development, 49(3), 473–489 (2019) [Google Scholar]
- J. Sun, P. Li, J. Yang. Biochem Biophys Res Commun. Repressing of NHERF1 inhibits liver cancer progression by promoting the production of ROS, 509(1), 8–15(2019) [Google Scholar]
- H. Yang, Y. Xie, D. Yang, et al. Oncotarget. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma, 8(15), 25310–25322(2017) [Google Scholar]
- V.O. Kaminskyy, B. Zhivotovsky. Antioxid Redox Signal. Free radicals in cross talk between autophagy and apoptosis, 21(1), 86–102(2014) [Google Scholar]
- M. Brown, N. Strudwick, M. Suwara, et al. J Cell Sci. An initial phase of JNK activation inhibits cell death early in the endoplasmic reticulum stress response, 129(12), 2317–2328(2016) [Google Scholar]
- Y. Tan, N. Dourdin, C. Wu, et al. J Biol Chem. Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress- induced apoptosis, 281(23), 16016–24(2006) [Google Scholar]
- N.L. Johnson, A.M. Gardner, K.M. Diener, et al. J Biol Chem. Signal transduction pathways regulated by mitogen-activated/extracellular response kinase kinase kinase induce cell death, 271(6), 3229–37(1996) [Google Scholar]
- Y.R. Chen, X. Wang, D. Templeton, et al. J Biol Chem. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation, 271(50), 31929–36(1996) [Google Scholar]
- X. Sui, N. Kong, L. Ye, et al. Cancer Lett. p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents, 344(2), 174–9(2014) [Google Scholar]
- M. Cao, F. Chen, N. Xie, et al. Cell Death Dis. c-Jun N-terminal kinases differentially regulate TNF- and TLRs-mediated necroptosis through their kinase- dependent and -independent activities, 9(12), 1140(2018) [Google Scholar]
- A. Roulston, C. Reinhard, P. Amiri, et al. J Biol Chem. Early activation of c-Jun N-terminal kinase and p38 kinase regulate cell survival in response to tumor necrosis factor alpha, 273(17), 10232–9(1998) [Google Scholar]
- J.L. Luo, H. Kamata, M. Karin, J Clin Invest. IKK/NF-kappaB signaling: balancing life and death–a new approach to cancer therapy, 115(10), 2625–32(2005) [Google Scholar]
- W. Bi, L. Xiao, Y. Jia, et al. J Biol Chem. c-Jun N- terminal kinase enhances MST1-mediated pro- apoptotic signaling through phosphorylation at serine 82, 285(9), 6259–64(2010) [Google Scholar]
- P. Xu, M. Das, J. Reilly, et al. Genes Dev. JNK regulates FoxO-dependent autophagy in neurons, 25(4), 310–22(2011) [Google Scholar]
- M.C. Wang, D. Bohmann, H. Jasper. Cell. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling, 121(1), 115–25(2005) [Google Scholar]
- M. Uno, S. Honjoh, M. Matsuda, et al. Cell Rep. A fasting-rTimes New RomanTimes New Romanesponsive signaling pathway that extends life span in C. elegans, 3(1), 79–91(2013) [Google Scholar]
- J.M. Ness, C.A. Harvey, A. Strasser, et al. Brain Res. Selective involvement of BH3-only Bcl-2 family members Bim and Bad in neonatal hypoxia-ischemia 1099(1), 150–9(2006) [Google Scholar]
- S. Zhou, Y. Wang, J.J. Zhu. ACS Appl Mater Interfaces. Simultaneous Detection of Tumor Cell Apoptosis Regulators Bcl-2 and Bax through a Dual-Signal-Marked Electrochemical Immunosensor, 8(12), 7674–82(2016) [Google Scholar]
- Y. Wei, S. Pattingre, S. Sinha, et al. Mol Cell. JNK1- mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy, 30(6), 678–88(2008) [Google Scholar]
- N. Westerlund, J. Zdrojewska, A. Padzik, et al. Nat Neurosci. Phosphorylation of SCG10/stathmin-2 determines multipolar stage exit and neuronal migration rate, 14(3), 305–13(2011) [Google Scholar]
- A.K. Myers, D.W. Meechan, D.R. Adney, et al. J Neurosci. Cortical interneurons require Jnk1 to enter and navigate the developing cerebral cortex, 34(23), 7787–801(2014) [Google Scholar]
- M. Yousef, E. Babur, S. Delibas, et al. J Mol Neurosci. Adult-Onset Hypothyroidism Alters the Metaplastic Properties of Dentate Granule Cells by Decreasing Akt Phosphorylation, 68(4), 647–657(2019) [Google Scholar]
- C. Morel, T. Sherrin, N.J. Kennedy, et al. J Neurosci. JIP1-Mediated JNK Activation Negatively Regulates Synaptic Plasticity and Spatial Memory, 38(15), 3708–3728(2018) [Google Scholar]
- N. Padilla-Coreano, S.S. Bolkan, G.M. Pierce, et al. Neuron. Direct Ventral Hippocampal-Prefrontal Input Is Required for Anxiety-Related Neural Activity and Behavior, 89(4), 857–66(2016) [Google Scholar]
- S. MacMillan, P.R. Szeszko, G.J. Moore, et al. J Child Adolesc Psychopharmacol. Increased amygdala: hippocampal volume ratios associated with severity of anxiety in pediatric major depression, 13(1), 65–73(2003) [Google Scholar]
- G.M. MacQueen, K. Yucel, V.H. Taylor, et al. Biol Psychiatry. Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder, 64(10), 880–3(2008) [Google Scholar]
- A. Tanti, C. Belzung. Neuroscience. Neurogenesis along the septo-temporal axis of the hippocampus: are depression and the action of antidepressants region-specific? 252, 234–52(2013) [Google Scholar]
- R.J. Schloesser, S. Orvoen, D.V. Jimenez, et al. Brain Stimul. Antidepressant-like Effects of Electroconvulsive Seizures Require Adult Neurogenesis in a Neuroendocrine Model of Depression, 8(5), 862–7(2015) [Google Scholar]
- J.S. Snyder, A. Soumier, M. Brewer, et al. Nature. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour, 476(7361), 458–61(2011) [Google Scholar]
- R.D. Castro-Torres, J. Landa, M. Rabaza, et al. Mol Neurobiol. JNK Isoforms Are Involved in the Control of Adult Hippocampal Neurogenesis in Mice, Both in Physiological Conditions and in an Experimental Model of Temporal Lobe Epilepsy, 56(8), 5856–5865(2019) [Google Scholar]
- P. Hollos, F. Marchisella, E.T. Coffey. Brain Plast. JNK Regulation of Depression and Anxiety, 3(2), 145–155(2018) [Google Scholar]
- H. Mohammad, F. Marchisella, S. Ortega-Martinez, et al. Mol Psychiatry. JNK1 controls adult hippocampal neurogenesis and imposes cell- autonomous control of anxiety behaviour from the neurogenic niche, 23(2), 487(2018) [Google Scholar]
- A. Surget, A. Tanti, E.D. Leonardo, et al. Mol Psychiatry. Antidepressants recruit new neurons to improve stress response regulation, 16(12), 1177–88(2011) [Google Scholar]
- B. Bjorkblom, N. Ostman, V. Hongisto, et al. J Neurosci. Constitutively active cytoplasmic c-Jun N- terminal kinase 1 is a dominant regulator of dendritic architecture: role of microtubule- associated protein 2 as an effector, 25(27), 6350–61(2005) [Google Scholar]
- A.A. Oliva, Jr., C.M. Atkins, L. Copenagle, et al. J Neurosci. Activated c-Jun N-terminal kinase is required for axon formation, 26(37), 9462–70(2006) [Google Scholar]
- E. Komulainen, J. Zdrojewska, E. Freemantle, et al. Front Cell Neurosci. JNK1 controls dendritic field size in L2/3 and L5 of the motor cortex, constrains soma size, and influences fine motor coordination, 8, 272(2014) [Google Scholar]
- R.L. Stornetta, J.J. Zhu. Neuroscientist. Ras and Rap signaling in synaptic plasticity and mental disorders, 17(1), 54–78(2011) [Google Scholar]
- L. Zhang, P. Zhang, G. Wang, et al. Neuron. Ras and Rap Signal Bidirectional Synaptic Plasticity via Distinct Subcellular Microdomains, 98(4), 783–800(2018) [Google Scholar]
- A. Kielland, G. Bochorishvili, J. Corson, et al. Neuron. Activity patterns govern synapse-specific AMPA receptor trafficking between deliverable and synaptic pools, 62(1), 84–101(2009) [Google Scholar]
- H. Yang, M.J. Courtney, P. Martinsson, et al. Eur J Neurosci. Hippocampal long-term depression is enhanced, depotentiation is inhibited and long-term potentiation is unaffected by the application of a selective c-Jun N-terminal kinase inhibitor to freely behaving rats, 33(9), 1647–55 (2011) [Google Scholar]
- H. Kaphzan, K.J. O’Riordan, K.P. Mangan, et al. PLoS One. NMDA and dopamine converge on the NMDA-receptor to induce ERK activation and synaptic depression in mature hippocampus, 1, 138 (2006) [Google Scholar]
- S. Biggi, L. Buccarello, A. Sclip, et al. Neural Plast. Evidence of Presynaptic Localization and Function of the c-Jun N-Terminal Kinase, 2017, 6468356 (2017) [Google Scholar]
- W.H. Toh, M.M. Siddique, L. Boominathan, et al. J Biol Chem. c-Jun regulates the stability and activity of the p53 homologue, p73, 279(43), 44713–22 (2004) [Google Scholar]
- S. Gupta, D. Campbell, B. Derijard, et al. Science. Transcription factor ATF2 regulation by the JNK signal transduction pathway, 267(5196), 389–93 (1995) [Google Scholar]
- A.M. Al-Ayoubi, H. Zheng, Y. Liu, et al. Mol Cell Biol. Mitogen-activated protein kinase phosphorylation of splicing factor 45 (SPF45) regulates SPF45 alternative splicing site utilization, proliferation, and cell adhesion, 32(14), 2880–93(2012) [Google Scholar]
- N.R. Lim, Y.Y. Yeap, T.T. Zhao, et al. J Cell Sci. Opposing roles for JNK and Aurora A in regulating the association of WDR62 with spindle microtubules, 128(3), 527–40(2015) [Google Scholar]
- E.A. Gordon, T.C. Whisenant, M. Zeller, et al. Cell Signal. Combining docking site and phosphosite predictions to find new substrates: identification of smoothelin-like-2 (SMTNL2) as a c-Jun N-terminal kinase (JNK) substrate, 25(12), 2518–29(2013) [Google Scholar]
- E. Shaulian, M. Schreiber, F. Piu, et al. Cell. The mammalian UV response: c-Jun induction is required for exit from p53-imposed growth arrest, 103(6), 897–907(2000) [Google Scholar]
- M. Karin, E. Shaulian. IUBMB Life. AP-1: linking hydrogen peroxide and oxidative stress to the control of cell proliferation and death, 52 (1–2),17–24(2001) [Google Scholar]
- D.H. Phanstiel, K. Van Bortle, D. Spacek, et al. Mol Cell. Static and Dynamic DNA Loops form AP-1-Bound Activation Hubs during Macrophage Development, 67(6), 1037–1048(2017) [Google Scholar]
- M. Hibi, A. Lin, T. Smeal, et al. Genes Dev. Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain, 7(11), 2135–48(1993) [Google Scholar]
- A. Kumar, U.K. Singh, S.G. Kini, et al. Future Med Chem. JNK pathway signaling: a novel and smarter therapeutic targets for various biological diseases, 7(15), 2065–86 (2015) [Google Scholar]
- M. Gehringer, F. Muth, P. Koch, et al. Expert Opin Ther Pat. c-Jun N-terminal kinase inhibitors: a patent review (2010-2014), 25(8), 849–72 (2015) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.