Open Access
Issue |
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
|
|
---|---|---|
Article Number | 03048 | |
Number of page(s) | 8 | |
Section | Medical Biology and Medical Signal Processing | |
DOI | https://doi.org/10.1051/e3sconf/202018503048 | |
Published online | 01 September 2020 |
- Lacombe D., Butler-Smith A., Therasse P., et al. Cancer drug development in Europe: A selection of new agents under development at the European drug development network. Cancer Investigation, 21,1(2003). [Google Scholar]
- Liu T. Q.,Yu J.,Zhu. M. Y., et al. Discovery and development of BH3 mimetic antitumor agents. Central South Pharmacy, 14,2(2016). [Google Scholar]
- Kohane D. S., Langer R., Biocompatibility and drug delivery systems. Chem. Sci, 1(2010). [Google Scholar]
- Wong P. T., Choi S. K., Mechanisms of drug release in nanotherapeutic delivery systems. Chem. Rev, 115(2015). [Google Scholar]
- Shi M., Lu J., Shoiche M. S., Organic nanoscale drug carriers coupled with ligands for targeted drug delivery in cancer. Journal of Materials Chemistry. 31,19(2009),. [Google Scholar]
- Zhang X. D., Luo Z. T., Chen J., et al. Ultrasmall Au10-12(SG)10-12 nanomolecules for high tumor specificity and cancer radiotherapy.Adv.Mater. 26(2014). [Google Scholar]
- Jain K. K., Drug Delivery systems – An overview. Methods in Molecular Biology, 437(2008). [CrossRef] [Google Scholar]
- Mu X. Y., He H., Wang J. Y., et al. Carbogenic nanozyme with ultrahigh RNS selectivity for traumatic brain injury. Nano. Lett. 19, 7 (2019). [Google Scholar]
- Webber M. J., Langer R., Drug delivery by supramolecular design. Chem. Soc. Rev. 46(2017). [Google Scholar]
- Capim S. L., Santana S. R., Rocha G. B., et al. Revisiting the origin of the preferential pi-pi stacking conformation of the (+)-8-phenylmenthyl acrylate. Journal of the brazilian chemical society. 9,21(2020). [Google Scholar]
- Shao Q., Yang J., Huang X. Q., et al. The design of water oxidation electrocatalysts from nanoscale metal-organic frameworks[J]. Chemistry-a european journal. 57,24(2018). [Google Scholar]
- F.Weinhold, Roger A. K., Improved general understanding of the hydrogen-bonding phenomena: a reply. Angewandte chemie-international edition. 9,54 (2015). [Google Scholar]
- Zhao R. K., Luo Y., Pendry J. B., Transformation optics applied to van der waals interactions. Science Bulletin. 1,61(2016). [Google Scholar]
- Amabilino D. B., Gale P. A., Supramolecular chemistry anniversary. Chem. Soc. Rev. 46(2017). [Google Scholar]
- Liu R., Cui H., Supramolecular nanostructures as drug carriers. Current Opinion in Chemical Engineering, 7 (2015). [Google Scholar]
- Zhou Y., Li H., Yang Y. W., Controlled drug delivery systems based on calixarenes. Chinese Chemical Letters, 26(2015). [Google Scholar]
- Simoes S. M., Rico A. R., Concheiro A., et al. Supramolecular cyclodextrin-based drug nanocarriers. International Journal of Biological Macromolecules, 44 (2009). [Google Scholar]
- Chen P, Shi B. Supramolecular drug delivery systems based on macrocyclic hosts. Progress In Chemistry, 29,7(2017). [Google Scholar]
- Cheng C., Deng T., Lin F., et al. Supramolecular nanomachines as stimuli-responsive gatekeepers on mesoporous silica nanoparticles for antibiotic and cancer drug delivery. Theranostics, 9,11(2019). [CrossRef] [PubMed] [Google Scholar]
- Zhao Y, Xing P. Supramolecular vesicles for stimulus-responsive drug delivery. Small Methods, 2, 1700364(2018). [Google Scholar]
- Jin X., Zhu L. J., Xue B., et al. Supramolecular nanoscale drug-delivery system with ordered structure. Natl. Sci. Rev., 6,6(2019). [Google Scholar]
- Cheng H., Cui Y. X., Wang R., et al. The development of light-responsive, organic dye based, supramolecular nanosystems for enhanced anticancer therapy. Coordination Chemistry Reviews, 392 (2019). [Google Scholar]
- Zhou J., Yu G., Huang F. H., Supramolecular chemotherapy based on host–guest molecular recognition: a novel strategy in the battle against cancer with a bright future, Chem. Soc. Rev. 46(2017). [Google Scholar]
- Chu P. K., Tang G., Hu Q., Cyclodextrin-based host−guest supramolecular nanoparticles for delivery: from design to applications. Bioconjugate Chem. 19(2008). [Google Scholar]
- Gadade D. D., Pekamwar S. S., Cyclodextrin based nanoparticles for drug delivery and theranostics, Adv Pharm Bull, 10,2(2020). [Google Scholar]
- Gontero D., Viger M. L., Brouard D, et al. Smart multifunctional nanoparticles design as sensors and drug delivery systems based on supramolecular chemistry. Microchemical Journal.130(2017). [Google Scholar]
- Ma M. F., Xing P. Y., Li S Y., et al. Advances of host-guest supramolecular vesicle and their properties in drug delivery. Progress In Chemistry. 26,8(2014). [Google Scholar]
- Ghassami E., Taymouri S., Varshosaz J. Supramolecular self-assembled nanogels a new platform for anticancer drug delivery. Current Pharmaceutical Design.23,55(2017). [Google Scholar]
- Amin M., Ahmad N., Pandey M., et al. Recent advances in the role of supramolecular hydrogels in drug delivery, Expert Opinion on Drug Delivery.12,7(2015). [Google Scholar]
- Xu Z. Y., Zhang Y. C., Lin J. L., et al. Supramolecular self-assembly applied for the design of drug delivery systems. Progress in Chemistry, 31,11(2019). [Google Scholar]
- Shao W., Liu X., Wang T. T., et al. Applications of supramolecular amphiphilc for the construction of drug delivery systems. Chinese Journal of Organic Chemistry, 38(2018). [Google Scholar]
- Zhang D., Ronson T. K., Nitachke J. R., Functional capsules via subcomponent self-assembly. Acc. Chem. Rev. 51(2018). [Google Scholar]
- Bhowmik D., Gopinath H., Kumar B. P., Controlled Release Drug Delivery Systems.“The Pharmainnovation” Journal, 1,10(2012). [Google Scholar]
- Xia M. C., Yang Y. W., Organic functional materials based on pillarenes[J]. Progress In Chemistry, 27,6(2015). [Google Scholar]
- Feng W., Jin M., Yang K, et al. Supramolecular delivery systems based on pillararenes. Chem. Commun. (Camb), 54(2018). [Google Scholar]
- Sathiyajith C., Shaikh R. R., Han Q., et al. Biological and related applications of pillar[n]arenes. Chem. Commun. (Camb), 53(2017). [Google Scholar]
- Wang Y., Pei Z., Feng W., et al. Stimuli-responsive supramolecular nano-systems based on pillar[n]arenes and their related applications. J. Mater. Chem. B, 7(2019). [Google Scholar]
- Xiao T., Qi L., Zhong W., et al. Stimuli-responsive nanocarriers constructed from pillar[n]arene-based supra-amphiphiles. Materials Chemistry Frontiers, 3(2019). [PubMed] [Google Scholar]
- Wu X., Gao L., Hu X. Y., et al. Supramolecular drug delivery systems based on water-soluble pillar[n]arenes. Chem. Rev. 16(2016). [Google Scholar]
- Song N., Kakuta T., Yamagishi T., et al. Molecular-scale porous materials based on pillar[n]arenes. CellPress, 4( ). [Google Scholar]
- Cocinero E. J., Pierre C., Carbohydrates[J]. Topics in Current Chemistry, 364(2015). [Google Scholar]
- Delbianco M., Bharate P., Aramburu S. V., Carbohydrates in Supramolecular Chemistry. Chem. Rev., 116(2016). [Google Scholar]
- Ren J. L., Multi-responsive glyco-target cationic vesicles based on pillar[5]arene and galactose derivative. (Northwest A&F University,2016) [Google Scholar]
- Liu X., Shao W., Zheng Y., et al. GSH-responsive supramolecular nanoparticles constructed by beta-d-galactose-modified pillar[5]arene and camptothecin prodrug for targeted anticancer drug delivery. Chem. Commun. (Camb), 53(2017). [Google Scholar]
- Li Q. L., Sun Y., Ren L., et al. Supramolecular nanosystem based on pillararene-capped CuS nanoparticles for targeted chemo-photothermal therapy. ACS. Appl. Mater Interfaces, 10(2018). [Google Scholar]
- Wu X., Zhang Y., Lu Y., et al. Synergistic and targeted drug delivery based on nano-CeO2 capped with galactose functionalized pillar[5]arene via host-guest interactions[J]. J. Mater. Chem. B, 5(2017). [Google Scholar]
- Wei P., Czaplewska J. A., Wang L., et al. Straightforward access to glycosylated, acid sensitive nanogels by host–guest interactions with sugar-modified pillar[5]arenes. ACS. Macro. Letters, 9(2020). [Google Scholar]
- Shang K., Wang Y., Lu Y., et al. Dual-targeted supramolecular vesicles based on the complex of galactose capped pillar[5]arene and triphenylphosphonium derivative for drug delivery. Israel Journal of Chemistry, 58(2018). [Google Scholar]
- Yang K., Chang Y., Wen J., et al. Supramolecular vesicles based on complex of Trp-modified pillar[5]arene and galactose derivative for synergistic and targeted drug delivery. Chemistry of Materials, 28(2016). [Google Scholar]
- Chang Y., Hou C., Ren J., et al. Multifunctional supramolecular vesicles based on the complex of ferrocenecarboxylic acid capped pillar[5]arene and a galactose derivative for targeted drug delivery. Chem. Commun. (Camb), 52(2016). [Google Scholar]
- Lu Y., Hou C., Ren J., et al. A multifunctional supramolecular vesicle based on complex of cystamine dihydrochloride capped pillar[5]arene and galactose derivative for targeted drug delivery. Int. J. Nanomedicine 14(2019). [Google Scholar]
- Nierengarten I., Buffet K., Holler M., et al. A mannosylated pillar[5]arene derivative: chiral information transfer and antiadhesive properties against uropathogenic bacteria. Tetrahedron Letters, 54(2013). [Google Scholar]
- Buffet K., Nierengarten L., Galanos N., et al. Pillar[5]arene-based glycoclusters: synthesis and multivalent binding to pathogenic bacterial lectins. Chem. Eur. J. 22(2016). [Google Scholar]
- Galanos N., Gillon E., Imberty A., et al. Pentavalent pillar[5]arene-based glycoclusters and their multivalent binding to pathogenic bacterial lectins. Org. Biomol. Chem., 14(2016). [Google Scholar]
- Vincent S. P., Buffet K., Nierengarten I., et al. Biologically active heteroglycoclusters constructed on a pillar[5]arene-containing [2]rotaxane scaffold. Chemistry, 22(2016). [Google Scholar]
- Yu G., Ma Y., Han C., et al. A sugar-functionalized amphiphilic pillar[5]arene: synthesis, self-assembly in water, and application in bacterial cell agglutination. J. Am. Chem. Soc. 135(2013). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.