Open Access
Issue
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
Article Number 04001
Number of page(s) 3
Section Chemical Engineering and Food Biotechnology
DOI https://doi.org/10.1051/e3sconf/202018504001
Published online 01 September 2020
  1. Ding, Y., Cano Z P., Yu A. (2019) Automotive Li- Ion Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2: 1–28. [CrossRef] [Google Scholar]
  2. Zubi, G., Dufo-Lopez, R., Carvalho M. (2018) The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 89: 292–308. [Google Scholar]
  3. Newman, J., Tiedemann, W. (1975) Porous- electrode theory with battery applications. AIChE Journal, 21: 25–41. [CrossRef] [Google Scholar]
  4. Martínez-Rosas, E., Vasquez-Medrano, R., Flores- Tlacuahuac, A. (2011) Modeling and simulation of lithium-ion batteries. Computers & Chemical Engineering, 35: 1937–1948. [Google Scholar]
  5. Zhang, Q., Guo, Q., White, R.E. (2007) Semi- empirical modeling of charge and discharge profiles for a LiCoO2 electrode. Journal of Power Sources, 165: 427–435. [Google Scholar]
  6. Sara, T.T., Bernard, M., Lantagne, G. (2018) Modeling and simulation of a commercial graphite– LiFePO4 cell in a full range of C-rates. Journal of Applied Electrochemistry. [Google Scholar]
  7. Haran, B.S., Popov, B.N., White, R.E. (1998) Determination of the hydrogen diffusion coefficient in metal hydrides by impedance spectroscopy. Journal of Power Sources, 75: 56–63. [Google Scholar]
  8. Huang, L., Yao, C. (2016) Working Condition Real- Time Monitoring Model of Lithium Ion Batteries Based on Distributed Parameter System and Single Particle Model. Chinese Journal of Chemical Physics, 29: 623–628. [CrossRef] [Google Scholar]
  9. Luo, W., Lyu, C., Wang, L. (2013) A new extension of physics-based single particle model for higher charge–discharge rates. Journal of Power Sources, 241: 295–310. [Google Scholar]
  10. Han, X., Ouyang, M., Lu, L. (2015) Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part I: Diffusion simplification and single particle model. Journal of Power Sources, 278: 802–813. [Google Scholar]
  11. Rahimian, S.K., Rayman, S., White, R.E. (2013) Extension of physics-based single particle model for higher charge–discharge rates. Journal of Power Sources, 224: 180–194. [Google Scholar]
  12. Goto, I., Ohkuma, H., Hongo, H. (2016) Feasibility Study of Modified Single-Particle Model for Composite Cathode at High-Rate Discharge. Electrochemistry, 84: 432–437. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.