Open Access
Issue
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
Article Number 04062
Number of page(s) 5
Section Chemical Engineering and Food Biotechnology
DOI https://doi.org/10.1051/e3sconf/202018504062
Published online 01 September 2020
  1. Tan,P.K., Liu, S., Gunic, E., Miner, J.N. (2017) Di scovery and characterization of verinurad, a potent a nd specific inhibitor of URAT1 for the treatment of hyperuricemia and gout. Sci RepUK.,7 (1): 66. [CrossRef] [Google Scholar]
  2. Li, Q.Y., Shi, C.C., Wang,M., Zhou,M., Liang,M., Zhang,T., Yuan,E.D., Wang,Z., Yao,M. J.,Ren,J.Y. (2019a)Tryptophan residue enhances in vitro walnut p roteinderived peptides exerting xanthine oxidase inhibition and antioxidant activities. JFunct Foods., 53:276–285. [CrossRef] [Google Scholar]
  3. Malik, N., Dhiman, P., Khatkar, A. (2019) In silico design and synthesis of hesperitin derivatives as new xanthine oxidase inhibitors. BMC Chemistry., 13(53).DOI:10.1186/s13065-019-0571-1. [CrossRef] [PubMed] [Google Scholar]
  4. Wang, Y.J., Zhang, G.W., Pan, J.H., Gong, D.M. (2015) Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase. JArg Food Chem., 63(2):526–534. [CrossRef] [Google Scholar]
  5. Moayedi, A., Mora, L., Aristoy, M.C., Safari, M., Hashemi, M., Toldrá, F. (2018) Peptidomic analysis of antioxidant and ACE-inhibitory peptides obtained from tomato waste proteins fermented using Bacillus subtilis. Food Chem.,250:180–187. [PubMed] [Google Scholar]
  6. Gangopadhyay, N., Wynne, K., O’Connor, P., Gallagher, E., Brunton, N.P., Rai, D.K, Hayes, M. (2016)In silico and in vitro analyses of the angiotensin-l converting enzyme inhibitory activity of hydrolysates generated from crude barley (Hordeum vulgare) protein concentrates. Food Chem.,203:367–374. [PubMed] [Google Scholar]
  7. Okamoto, K., Eger, B.T., Nishino, T., Kondo, S., Pai, E.F., Nishino, T. (2003) An extremely potent inhibitor of xanthine oxidoreductase: crystal structure of the enzyme-inhibitor complex and mechanism of inhibition. J Biol Chem., 278(3):1848–1855. [CrossRef] [PubMed] [Google Scholar]
  8. Li, T.T., Ren, L.K., Wang, D.F., Song, M.J., Li, Q.Y., Li, J.R. (2019b) Optimization of extraction conditions and determination of purine content in marine fish during boiling. PeerJ., 7:e6690.DOI:10.7717/peerj.6690. [Google Scholar]
  9. Yu, Z.P., Wu, S.J., Zhao, W.Z., Ding, L., David S., Chen, F., Li, J.R., Liu, J.B. (2017) Identification and molecular mechanism of a novel myosin- derived ACE inhibitory peptide. Food Funct., 9: 364–370. [Google Scholar]
  10. Cao,H.N., Pauff James, M., Russ, H. (2010)Substrate orientation and catalytic specificity in the action of xanthine oxidase. J Biol Chem.,285(36):28044–28053. [CrossRef] [PubMed] [Google Scholar]
  11. Li, Q.Y., Kang, X.Y., Shi, C.C., Li,Y.J., Majumder, K., Ning,Z.X.,Ren, J.Y. (2018b) Moderation of hyperuricemicrats via consuming walnut protein hydrolysates diet and identification of new antihyperuricemicpeptides. Food Funct., 9,107-116. [Google Scholar]
  12. Chen, H.B., Khemtong, C., Yang, X.L., Chang, X.L., Gao, J.M. (2011) Nanonization strategies for poorly water-soluble drugs. Drug Discov Today., 16(7-8):354–360. [CrossRef] [PubMed] [Google Scholar]
  13. Acquah, C., Stefano,E.D., Udenigwe, C.C. (2018) Role of hydrophobicity in food peptide functionality and bioactivity. J Food Bioact.,4:88–98. [Google Scholar]
  14. Bjerrum, E. J., Jensen, J.H., Tolborg, J.L. (2017) pI Calculax: Improved prediction of isoelectric point for modified peptides. J Chem Inf Model., 57 (8):1723–1727. [CrossRef] [PubMed] [Google Scholar]
  15. Liu, N. X., Wang, Y., Yan, M.F., Bian, W.X., Zeng, L., Yin, S.G., Xiong, Z.Q., Hu, Y., Wang, S.Y., Meng, B.L., Sun, J., Yang, X.W. (2019). A new rice-derived short peptide potently alleviated hyperuricemia induced by potassium oxonate in rats. J Arg Food Chem., 67(1):220–228. [CrossRef] [Google Scholar]
  16. Jang, I.T., Hyun, S.H., Shin, J.W., Lee, Y.H., Ji, J.H., Lee, J.S. (2014) Characterization of an anti- gout xanthine oxidase inhibitor from pleurotusostreatus. Mycobiology., 42(3):296–300. [CrossRef] [PubMed] [Google Scholar]
  17. He, W.W., Su, G.W., Sun-Waterhouse, D.X., Geoffrey, I.N., Zhao, M.M., Liu, Y. (2019) In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions. Food Chem., 453–461. [Google Scholar]
  18. Nongonierma, A.B., Fitzgerald, R.G. (2012) Tryptophan-containing milk protein-derived dipeptides inhibit xanthine oxidase. Peptides, 37(2):263–272. [CrossRef] [PubMed] [Google Scholar]
  19. Li,Y. J., Kang, X. Y., Li, Q. Y., Shi,C. C., Lian, Y. Y., Yuan, E. D., Zhou, M. and Ren, J. Y. 2018c.Anti-hyperuricemic peptides derived from bonito hydrolysates based on in vivo hyperuricemic model and in vitro xanthine oxidase inhibitory activity. Peptides.107: 45–53. [CrossRef] [PubMed] [Google Scholar]
  20. Li, Q. Y. (2018c) Study on the structure-activity mechanism of targeting inhibition of xanthine oxidase by uric acid-lowering peptides derived from walnut. [dissertation]. China: South China University of Technology. [Google Scholar]
  21. Zou, L. (2019) Enzymatic preparation, functional evaluation of xanthine oxidase inhibitory peptides from skipiack tuna. [dissertation]. China: Zhejiang University. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.