Open Access
Issue
E3S Web Conf.
Volume 191, 2020
2020 The 3rd International Conference on Renewable Energy and Environment Engineering (REEE 2020)
Article Number 03003
Number of page(s) 5
Section Environmental Monitoring and Quality Assessment
DOI https://doi.org/10.1051/e3sconf/202019103003
Published online 24 September 2020
  1. Olah G A, Prakash G K S and Goeppert A. Anthropogenic chemical carbon cycle for a sustainable future[J]. J. Am. Chem. Soc., 133 33 (2011): 12881~12898. [Google Scholar]
  2. Muradov N Z. How to produce hydrogen from fossil fuels without CO2 emission[J]. Int. J. Hydrogen Energy, 18 3 (1993): 211~215. [Google Scholar]
  3. Mitchell J F. The “greenhouse” effect and climate change. Reviews of Geophysics, 27 1 (1989): 115-139. [Google Scholar]
  4. Gibbins J, Chalmers H. Carbon capture and storage[J]. Energy policy, 36 12 (2008): 4317-4322. [Google Scholar]
  5. Cuéllar-Franca R M, Azapagic A. Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. Journal of CO2 utilization, 9(2015): 82-102. [CrossRef] [Google Scholar]
  6. Zhou H, Mu S, Ren B H, et al. Organocatalyzed carboxylative cyclization of propargylic amides with atmospheric CO2 towards oxazolidine-2, 4-diones. Green chemistry, 21 5 (2019): 991-994. [CrossRef] [Google Scholar]
  7. Mac Dowell N, Fennell P S, Shah N, et al. The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change, 7 4 (2017): 243-249. [Google Scholar]
  8. Khoo H H, Bu J, Wong R L, et al. Carbon capture and utilization: Preliminary life cycle CO2, energy, and cost results of potential mineral carbonation. Energy Procedia, 4(2011): 2494-2501. [Google Scholar]
  9. Woodall C M, McQueen N, Pilorgé H, et al. Utilization of mineral carbonation products: current state and potential. Greenhouse Gases: Science and Technology, (2019). [Google Scholar]
  10. Aresta M, Tommasi I. Carbon dioxide utilisation in the chemical industry. Energy conversion and management, 38(1997): S373-S378. [Google Scholar]
  11. Grzelczak M, Pérez-Juste J, Mulvaney P, et al. Shape control in gold nanoparticle synthesis. Chemical Society Reviews, 37 9 (2008): 1783-1791. [CrossRef] [PubMed] [Google Scholar]
  12. Ma X, Ye K, Wang G, et al. Facile fabrication of gold coated nickel nanoarrays and its excellent catalytic performance towards sodium borohydride electro-oxidation. Applied Surface Science, 414(2017): 353-360. [Google Scholar]
  13. Kuhl K P, Hatsukade T, Cave E R, et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. Journal of the American Chemical Society, 136 40 (2014): 14107-14113. [CrossRef] [PubMed] [Google Scholar]
  14. Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. Journal of the Chemical Society, Chemical Communications, 7(1994): 801-802. [CrossRef] [Google Scholar]
  15. Zhao P, Li N, Astruc D. State of the art in gold nanoparticle synthesis. Coordination Chemistry Reviews, 257 3-4 (2013): 638-665. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.