Open Access
Issue
E3S Web Conf.
Volume 193, 2020
International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2020)
Article Number 02001
Number of page(s) 8
Section Ecology and Labor Protection
DOI https://doi.org/10.1051/e3sconf/202019302001
Published online 08 October 2020
  1. I.A. Terenteva, N.A. Kashulin, D.B. Denisov Ocenka troficheskogo statusa subarkticheskogo ozera Imandra [Taxation of the trophic status of the subarctic lake Imandra], Bulletin of Murmansk technical University, 20, 1-2, pp. 197-204, (2017), (in Russian). [Google Scholar]
  2. V.V. Bulion Novyj vzglyad na paradigmu fosfornogo kontrolya v limnologii [A new look at the paradigm of phosphorus control in limnology], Advances of modern biology, 136, 3, pp. 311-318, (2016) (in Russian). [Google Scholar]
  3. D.A. Danilovich, A.N. Epov, M.A. Kanunnikova Analiz dannyh raboty ochistnyh sooruzhenij rossijskih gorodov – osnova dlya tekhnologicheskogo normirovaniya [Analysis of data on the operation of treatment facilities in Russian cities the basis for technological normalization], Best available water supply and sanitation technologies, 3-4, pp. 18-28 (2015) (in Russian). [Google Scholar]
  4. Yu.M. Meshengisser Retekhnologizaciya sooruzhenij ochistki stochnyh vod [Retechnologization of wastewater treatment facilities] (LLC “Publishing House” Around the color”, Moscow, 208 p., 2012) (in Russian). [Google Scholar]
  5. Metodika razrabotki reestra nailuchshih dostupnyh tekhnologij (NTD) sistem vodosnabzheniya i vodootvedeniya. Razdel 2. Kanalizaciya. T.1. [Methodology for developing the register of best available technologies (NTD) for water supply and sanitation systems. Section 2. Sewerage. T.1.] (National Association of designers, Moscow, 141 p., 2014) (in Russian). [Google Scholar]
  6. ITS 10-2015. Ochistka stochnyh vod s ispol’zovaniem centralizovannyh sistem vodootvedeniya poselenij, gorodskih okrugov [Wastewater treatment using centralized water disposal systems in settlements and urban districts], (Bureau of NTD, Moscow, 377 p., 2015) (in Russian). [Google Scholar]
  7. Patent № RU 2053688. [Google Scholar]
  8. Patent № RU 2036844. [Google Scholar]
  9. Patent RU 2412756. [Google Scholar]
  10. Patent RU 2440304. [Google Scholar]
  11. D. Dihang, P. Aimar, J. Kayema, S.N. Koungou Coagulation and flocculation of laterite suspensions with low levels of aluminium chloride and polyacrylamids, Chemical Engineering and Processing, 47, 1509–1519 (2008). [CrossRef] [Google Scholar]
  12. M. Kimura, Y. Matsui, K. Kondo, T.B. Ishikawa, T. Matsushita, N. Shirasaki Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants, Water research, 47, 2075-2084 (2013). [CrossRef] [PubMed] [Google Scholar]
  13. F. Nyström, K. Nordqvist, I. Herrmann, A. Hedström, M. Viklander Removal of metals and hydrocarbons from stormwater using coagulation and flocculation, Water Research, 182, 115919 (2020). [CrossRef] [PubMed] [Google Scholar]
  14. K. Rajala, O. Grönfors, M. Hesampour, A. Mikola Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals, Water Research, 116045 (2020). [CrossRef] [PubMed] [Google Scholar]
  15. A.K. Tolkou, M. Mitrakas, I.A. Katsoyiannis, M. Ernst, A.I. Zouboulis Fluoride removal from water by composite Al/Fe/Si/Mg prepolymerized coagulants: Characterization and application, Chemosphere, 231, 528-537 (2019). [Google Scholar]
  16. Y. Suna, C. Zhua, H. Zhengc, W. Suna, Y. Xub, X. Xiaob, Z. Youa, C. Liu Characterization and coagulation behavior ofpolymeric aluminum ferric silicate forhigh-concentration oily wastewater treatment, Chemical engineering research and design, 119, 23–32 (2017). [CrossRef] [Google Scholar]
  17. S. Ghafari, H.A. Aziz, M.H. Isa, A.A. Zinatizadeh Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum, Journal of Hazardous Materials, 163, 650–656 (2009). [CrossRef] [PubMed] [Google Scholar]
  18. W.L. Ang, A.W. Mohammad State of the art and sustainability of natural coagulants in water and wastewater treatment, Journal of Cleaner Production, 262, 121267 (2020). [Google Scholar]
  19. G. Zhua, H. Zhenga, Z. Zhanga, T. Tshukudua, P. Zhanga, X. Xiang Characterization and coagulation–flocculation behavior of polymeric aluminum ferric sulfate (PAFS), Chemical Engineering Journal, 178, 50–59 (2011). [CrossRef] [Google Scholar]
  20. F.M. Mohamed, K.A. Alfalous The effectiveness of activated silica derived from rice husk in coagulation process compared with inorganic coagulants for wastewater treatment, Egyptian Journal of Aquatic Research, 46, 131–136 (2020). [CrossRef] [Google Scholar]
  21. A. Nath, A. Mishra, P.P. Pande A review natural polymeric coagulants in wastewater treatment, Materials Today: Proceedings, (2020). [Google Scholar]
  22. Y.O. Velyaev, V.I. Zakharov, D.V. Maiorov Improvement of the technology for the synthesis of an alumosilicate coagulant-flocculant based on nepheline, Glass Physics and Chemistry, 37, 5, 568-571 (2011). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.