Open Access
Issue
E3S Web Conf.
Volume 194, 2020
2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020)
Article Number 02004
Number of page(s) 6
Section Renewable Energy and New Energy Technology
DOI https://doi.org/10.1051/e3sconf/202019402004
Published online 15 October 2020
  1. Andresen, Tino. Molten Aluminum Lakes Offer Power Storage for German Wind Farms , Bloomberg, 27 October 2014. [Google Scholar]
  2. Buczynski, Beth (23 August 2012). Power To Gas Technology Turns Excess Wind Energy Into Natural Gas. Revmodo.com. Archived from the original on 5 October 2012. [Google Scholar]
  3. Shahan, Zachary (27 July 2012). Wind Turbine Net Capacity Factor – 50% the New Normal?. Cleantechnica.com. Retrieved 11 January 2013. [Google Scholar]
  4. WindpoweringAmerica.gov Archived 2 May 2013 at the Wayback Machine., 46. U.S. Department of Energy; Energy Efficiency and Renewable Energy “20% Wind Energy by 2030” [Google Scholar]
  5. Simon Chapman, Summary of main conclusions reached in 25 reviews of the research literature on wind farms and health, Sydney University School of Public Health, April 2015 [Google Scholar]
  6. European Commission (2014) Directive 2014/89/EU of the European Parliament and of the Council: Establishing a Framework for Maritime Spatial Planning. Official Journal of the European Union, 135-145. [Google Scholar]
  7. Rawn, B.G.; Vanereijden, M.A. Analysis of North Sea Off shore Wind Power Variability. Resources 2014, 3, 454-470. [Google Scholar]
  8. M.Y. Abdellah, M.S. Alsoufi, M.K. Hassan, H.A. Ghulman, and A.F. Mohamed, “Extended finite element numerical analysis of scale effect in notched glass fiber reinforced epoxy composite,” Archive of Mechanical Engineering, vol. 62, pp. 217-236, 2015. [CrossRef] [Google Scholar]
  9. DONG Xiao-feng, LIAN Ji-jian, WANG Hai-jun. Study on Vibration Source Features of Offshore Wind Power Structure under the Operational Conditions[J]. JOURNAL OF VIBRATION AND SHOCK, 2017, 36(17: 21-28. [Google Scholar]
  10. FU Yang, ZHENG Zichen, SHI Shuai, et al. Offshore Wind Power Forecasting Considering Meteorological Similarity and NWP Correction[J]. POWER SYSTEM TECHNOLOGY, 2019, 43(4: 1253-1259. [Google Scholar]
  11. Kühn, B., Krieglstein, T.: BedarfsgerechteWerkstoffwahlzurVermeidung von SprödbrüchenfürGründungsbauteile von Offshore-Windkraftanlagenaus Stahl gemäß DIN EN 1993-1-10, Abschlussbericht, Technische Hochschule Mittelhessen, 2016. [Google Scholar]
  12. Huiming Zhang, Yu Zheng, Dequn Zhou, Xingle Long. Selection of key technology policies for Chinese offshore wind power: A perspective on patent maps, Marine Policy Volume 93, July 2018, Pages 47-53 [Google Scholar]
  13. Felix Optehostert, Daniela Müller, Philipp Jussen. Dispositioning Strategies of Maintenance Tasks in Offshore Wind Farms,from book Advances in Production Management Systems. The Path to Intelligent, Collaborative and Sustainable Manufacturing (Proceedings of: IFIP WG 5.7 International Conference, APMS 2017, Hamburg, Germany, September 3-7, 2017, Part I and II) pp.101-108 [Google Scholar]
  14. Linus Hammar, Diana Perry, Martin Gullström. Offshore Wind Power for Marine Conservation, OJMS, Vol.6 No.1, January 2016, PP. 66-78 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.