Open Access
E3S Web Conf.
Volume 194, 2020
2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020)
Article Number 03006
Number of page(s) 6
Section Power Engineering and Power Generation Technology
Published online 15 October 2020
  1. Crabtree C.J., Feng Y, Tavner P.J.. Detecting incipient wind turbine gearbox failure: a signal analysis method for on-line condition monitoring. Proceeding of European Wind Energy Conference. C. Poland 2010:11-14. [Google Scholar]
  2. Lu Bin, Li Yaoyu, Wu Xin, A review of recent advance in wind turbine condition monitoring and fault diagnosis. Lincoln: Proceedings of Power Electronics and Machines in Wind Application. C. 2009:1-7. [Google Scholar]
  3. Hameed Z, Hong Y.S., Cho Y.M., et al. Condition monitoring and fault detection of wind turbines and related algorithm : a review. Renewable and Sustainable Energy Reviews. J. 2009, 13(1):1-39. [Google Scholar]
  4. Amirat Y, Benbouzid M, Al-Ahmar E, A brief status on condition monitoring and fault diagnosis in wind energy conversion systems. Renewable and Sustainable Energy Reviews. J. 2009, 13(9: 2629-2636. [Google Scholar]
  5. Guo Peng, David Infield, Yang Xiyun, Wind turbine gearbox condition monitoring using temperature trend analysis. Journal of Chinese Electrical Engineering Science. J. 2011, 31(32):129-136. [Google Scholar]
  6. Alexios Koltsidopoulos, Papatzimos, Philipp R, Thies, et al. Offshore wind turbine fault alarm prediction. Wind Energy. J. 2019:1779-1788. [Google Scholar]
  7. Alan Turnbull, James Carroll, Alasdair McDonald, et al. Prediction of wind turbine generator failure using two-stage cluster-classification methodology. Wind Energy. J. 2019: 1593-1602. [Google Scholar]
  8. Lorenzo Colone, Nikolay Dimitrov, Daniel Straub. Predictive repair scheduling of wind turbine drive-train components based on machine learning. Wind Energy. J. 2019: 1230-1242. [Google Scholar]
  9. James Carroll, Sofia Koukoura, Alasdair McDonald, et al. Wind turbine gearbox failure and remaining useful life prediction using machine learning techniques. Wind Energy. J. 2019: 360-375. [Google Scholar]
  10. Pere Marti Puig, Alejandro Blanco M, Juan José Cárdenas, et al. Feature Selection Algorithms for Wind Turbine Failure Prediction. Energies. J. 2019: 453. [Google Scholar]
  11. Volkan Sevinc, Omer Kucuk, Merih Goltas, A Bayesian network model for prediction and analysis of possible forest fire causes. Forest Ecology and Management. J. 2020:457. [Google Scholar]
  12. James Carroll, Sofia Koukoura, Alasdair Mcdonald, et al. Wind turbine gearbox failure and remaining useful life prediction using machine learning techniques. Wind Energy. J. 2019, 22(3):360-375. [Google Scholar]
  13. Pere Martipuig, Alejandro Blancom, J.J Cardenas, et al. Feature selection algorithms for wind turbine failure prediction. Energies. J. 2019, 12(3):453. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.