Open Access
Issue
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
Article Number 02010
Number of page(s) 6
Section Teoretical and Numerical Models
DOI https://doi.org/10.1051/e3sconf/202019502010
Published online 16 October 2020
  1. A. Ahangar-Asr, A. Johari, and A. A. Javadi. An evolutionary approach to modelling the soil–water characteristic curve in unsaturated soils. COMPUT. GEOSCI. 43 (2012). [Google Scholar]
  2. R. Brooks, and T. Corey. Hydraulics properties of porous media. Hydrology Papers, Colorado State University 24 (1964). [Google Scholar]
  3. M. Th.Van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. SOIL SCI SOC AM J. 44, 5 (1980). [Google Scholar]
  4. H. P. Cresswell, and Z. Paydar. Water retention in Australian soils. I. Description and prediction using parametric functions. SOIL RES. 34, 2 (1996). [CrossRef] [Google Scholar]
  5. J. Tomasella, and M. G. Hodnett. Estimating soil water retention characteristics from limited data in Brazilian Amazonia. SOIL SCI. 163, 3 (1998). [Google Scholar]
  6. E. Nikooee, T. Sweijen, and S. Majid Hassanizadeh. Determination of the relationship among capillary pressure, saturation and interfacial area: a pore unit assembly approach. E3S Web of Conferences. Vol. 9. EDP Sciences, 2016.A [Google Scholar]
  7. H. Khaksar, G. Habibagahi, and E. Nikooee. SWRC modeling in unsaturated soils: a pore network approach. Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics. 2013. [Google Scholar]
  8. A. Rostami, G. Habibagahi, M. Ajdari, and E. Nikooee, Pore network investigation on hysteresis phenomena and influence of stress state on the SWRC. INT. J. GEOMECH. 15.5 (2013): 04014072.A [Google Scholar]
  9. J. L. Hutson, and A. Cass. A retentivity function for use in soil–water simulation models. J. SOIL SCI. 38,1 (1987). [Google Scholar]
  10. M. Aubertin, J. F. Ricard, and R. P. Chapuis. A predictive model for the water retention curve: application to tailings from hard-rock mines. CAN. GEOTECH. J. 35,1 (1998). [Google Scholar]
  11. A. Johari, and A. A. Javadi. Prediction of a soil-water characteristic curve using neural network. 5th InternationalConference on Unsaturated Soils (2011). [Google Scholar]
  12. A. Johari, G. Habibagahi, and A. Ghahramani. Prediction of soil–water characteristic curve using genetic programming. J. GEOTECH GEOENVIRON 132, 5 (2006). [Google Scholar]
  13. SoilVision, S. L. SoilVision: a Knowledge-based database system for saturated/unsaturated soil properties, version 4.14. SoilVision Systems Ltd, Saskatchewan (2005). [Google Scholar]
  14. L. M., Arya, and J. F. Paris. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data 1. SOIL SCI SOC AM J. 45, 6 (1981). [Google Scholar]
  15. J.R. Koza, D.E. Goldberg, D.B. Fogel, and R.L. Riolo, eds.. Genetic Programming: Proceedings of the First Annual Conference, 1996. Cambridge Mass: Mit Press, 1996. [Google Scholar]
  16. A. Garg, A. Garg, K. Tai, S. Barontini, and A. Stokes, A computational intelligence-based genetic programming approach for the simulation of soil water retention curves. TRANSPORT POROUS MED. 103, 3 (2014). [CrossRef] [Google Scholar]
  17. D. P. Searson, D. E. Leahy, and M. J. Willis. GPTIPS: an open source genetic programming toolbox for multigene symbolic regression. Proceedings of the International multiconference of engineers and computer scientists. Vol. 1. Hong Kong: IMECS, 2010. [Google Scholar]
  18. U. Buczko, and H. H. Gerke. Evaluation of the Arya-Paris model for estimating water retention characteristics of lignitic mine soils. SOIL SCI. 170,7 (2005). [Google Scholar]
  19. L. M. Arya, F. J. Leij, M. Th. van Genuchten, and P. J. Shouse. Scaling parameter to predict the soil water characteristic from particle-size distribution data. SOIL SCI SOC AM J. 63, 3 (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.