Open Access
Issue |
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 10 | |
Section | Energy Storage and Integration of Energy Networks. Technologies | |
DOI | https://doi.org/10.1051/e3sconf/202019701001 | |
Published online | 22 October 2020 |
- P. Arce, M. Medrano, A. Gil, E. Oró and L. F. Cabeza, “Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe,” Applied Energy, vol. 88, pp. 2764-2774, 2011. [CrossRef] [Google Scholar]
- S. Kalaiselvam and R. Parameshwaran, Thermal Energy Storage Technologies for Sustainability, Academic Press, 2014. [Google Scholar]
- L. F. Cabeza, I. Martorell, L. Mirò, A. Fernàndez and C. Barrenche, “Introduction to thermal energy storage,” in Advances in Thermal Energy Storage Systems, Methods and Applications, Woodhead Publishing, 2015. [Google Scholar]
- A. Sharma, V. V. Tyagi, C. R. Chen and D. Buddhi, “Review on thermal energy storage with phase change materials and applications,” Renewable and Sustainable Energy Reviews, vol. 13, no. 2, pp. 318-347, 2009. [CrossRef] [Google Scholar]
- Z. A. Qureshi, H. M. Ali and S. Khushnood, “Recent advances on thermal conductivity enhancement of phase change materials for energy storage systems: A review,” International Journal of Heat and Mass Transfer, vol. 127, pp. 838-856, 2018. [CrossRef] [Google Scholar]
- S. Wu, T. Yan, Z. Kuai and W. Pan, “Thermal conductivity enhancement on phase change materials for thermal energy storage: A review,” Energy Storage Material, vol. 25, pp. 251-295, 2020. [CrossRef] [Google Scholar]
- A. Abhat, “Low Temperature Latent Heat Thermal Energy Storage: Heat Storage Materials,” Solar Energy, vol. 30, no. 4, pp. 313-332, 1983. [Google Scholar]
- R. Rota, Fondamenti di Termodinamica dell’Ingegneria Chimica, Pitagora, 2015. [Google Scholar]
- B. I. Lee and M. G. Kesler, “A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States,” AIChE Journal, vol. 21, no. 3, pp. 510-527, 1975. [CrossRef] [Google Scholar]
- U. Plöcker, H. Knapp and J. Prausnitz, “Calculation of High-Pressure Vapor-Liquid Equilibria from a CorrespondingStates Correlation with Emphasis on Asymmetric Mixtures,” Industrial & Engineering Chemistry Process, Design and Development, vol. 17, no. 3, pp. 324-322, 1978. [CrossRef] [Google Scholar]
- K. E. Starling, “Thermo Data Refined for LPG, Part 1: Equation of State and Computer Prediction,” Hydrocarbon Processing, vol. 50, no. 3, pp. 101-104, 1971. [Google Scholar]
- M. B. Mills, J. M. Wills and V. L. Bhirud, “The Calculation of Density by the BWRS Equation of State In Process Simulation Contexts,” AIChE Journal, vol. 26, no. 6, 1980. [Google Scholar]
- B. E. Poling, J. E. Prausnitz and J. P. O’Connell, The Properties of Gases and Liquids, McGraw-Hill, 2001. [Google Scholar]
- M. Taravillo, V. G. Baonza, M. Cáceres and J. Núñez, “Thermodynamic regularities in compressed liqudis: I. The thermal expansion coefficient,” Journal of Physics: Condensed Matter, vol. 15, no. 19, pp. 2979-2989, 2003. [CrossRef] [Google Scholar]
- E. Macchi and A. Perdichizzi, “Efficiency Prediction for Axial-Flow Turbines Operating With Nonconventional Fluids,” Journal of Engineering for Power, vol. 103, no. 4, pp. 718-724, 1981. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.