Open Access
Issue
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 01003
Number of page(s) 17
Section Energy Storage and Integration of Energy Networks. Technologies
DOI https://doi.org/10.1051/e3sconf/202019701003
Published online 22 October 2020
  1. Lund, H.; Andersen, A.N.; Østergaard, P.A.; Mathiesen, B.V.; Connolly, D. From electricity smart grids to smart energy systems A market operation based approach and understanding. Energy 2012, 42, 96–102, doi:10.1016/j.energy.2012.04.003. [CrossRef] [Google Scholar]
  2. Lund, H.; Østergaard, P.A.; Connolly, D.; Ridjan, I.; Mathiesen, B.V.; Hvelplund, F.; Thellufsen, J.Z.; Sorknses, P. Energy storage and smart energy systems. Int. J. Sustain. Energy Plan. Manag. 2016, 11, 3–14, doi:10.5278/ijsepm.2016.11.2. [Google Scholar]
  3. Jacobson, M.Z.; Delucchi, M.A.; Cameron, M.A.; Frew, B.A. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 15060–15065, doi:10.1073/pnas.1510028112. [CrossRef] [PubMed] [Google Scholar]
  4. Lund, H.; Østergaard, P.A.; Connolly, D.; Mathiesen, B.V. Smart energy and smart energy systems. Energy 2017, 137, 556–565, doi:10.1016/j.energy.2017.05.123. [CrossRef] [Google Scholar]
  5. Nastasi, B.; Lo Basso, G. Hydrogen to link heat and electricity in the transition towards future Smart Energy Systems. Energy 2016, 110, 5–22, doi:10.1016/j.energy.2016.03.097. [CrossRef] [Google Scholar]
  6. Nastasi, B.; Lo Basso, G.; Astiaso Garcia, D.; Cumo, F.; de Santoli, L. Power-togas leverage effect on power-to-heat application for urban renewable thermal energy systems. Int. J. Hydrogen Energy 2018, 43, 23076–23090, doi:10.1016/j.ijhydene.2018.08.119. [CrossRef] [Google Scholar]
  7. Hansen, K.; Breyer, C.; Lund, H. Status and perspectives on 100% renewable energy systems. Energy 2019, 175, 471–480, doi:10.1016/j.energy.2019.03.092. [CrossRef] [Google Scholar]
  8. Deason, W. Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost. Renew. Sustain. Energy Rev. 2018, 82, 3168–3178, doi:10.1016/j.rser.2017.10.026. [CrossRef] [Google Scholar]
  9. Cochran, J.; Mai, T.; Bazilian, M. Meta-analysis of high penetration renewable energy scenarios. Renew. Sustain. Energy Rev. 2014, 29, 246–253. [CrossRef] [Google Scholar]
  10. Connolly, D.; Lund, H.; Mathiesen, B. V. Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew. Sustain. Energy Rev. 2016, 60, 1634–1653, doi:10.1016/j.rser.2016.02.025. [CrossRef] [Google Scholar]
  11. Dominković, D.F.; Bačeković, I.; Ćosić, B.; Krajačić, G.; Pukšec, T.; Duić, N.; Markovska, N. Zero carbon energy system of South East Europe in 2050. Appl. Energy 2016, 184, 1517–1528, doi:10.1016/j.apenergy.2016.03.046. [CrossRef] [Google Scholar]
  12. Lund, H.; Mathiesen, B. V. Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050. Energy 2009, 34, 524–531, doi:10.1016/j.energy.2008.04.003. [CrossRef] [Google Scholar]
  13. Vad, B.; Roth, S.; Zinck, J. Aalborg Universitet IDA ’ s Energy Vision 2050 Søgaard ; Drysdale, Dave ; Connolly, David ; Østergaard, Poul Alberg; 2015; ISBN 9788791404788. [Google Scholar]
  14. Vidal-Amaro, J.J.; Sheinbaum-Pardo, C. A transition strategy from fossil fuels to renewable energy sources in the mexican electricity system. J. Sustain. Dev. Energy, Water Environ. Syst. 2018, 6, 47–66, doi:10.13044/j.sdewes.d5.0170. [CrossRef] [Google Scholar]
  15. Connolly, D.; Mathiesen, B.V. A technical and economic analysis of one potential pathway to a 100% renewable energy system. Int. J. Sustain. Energy Plan. Manag. 2014, 1, 7–28, doi:10.5278/ijsepm.2014.1.2. [Google Scholar]
  16. Alberg Østergaard, P.; Mathiesen, B.V.; Möller, B.; Lund, H. A renewable energy scenario for Aalborg Municipality based on low-temperature geothermal heat, wind power and biomass. Energy 2010, 35, 4892–4901, doi:10.1016/j.energy.2010.08.041. [CrossRef] [Google Scholar]
  17. Mathiesen, Brian Vad; Lund, Rasmus Søgaard; Connolly, David; Ridjan, Iva; Nielsen, S. Copenhagen Energy Vision 2050: A sustainable vision for bringing a capital to 100% renewable energy. 2015, 100. [Google Scholar]
  18. Bačeković, I.; Østergaard, P.A. A smart energy system approach vs a nonintegrated renewable energy system approach to designing a future energy system in Zagreb. Energy 2018, 155, 824–837, doi:10.1016/j.energy.2018.05.075. [CrossRef] [Google Scholar]
  19. Groppi, D.; Astiaso Garcia, D.; Lo Basso, G.; De Santoli, L. Synergy between smart energy systems simulation tools for greening small Mediterranean islands. Renew. Energy 2019, 135, 515–524, doi:10.1016/j.renene.2018.12.043. [CrossRef] [Google Scholar]
  20. Lo Basso, G.; Rosa, F.; Astiaso Garcia, D.; Cumo, F. Hybrid systems adoption for lowering historic buildings PFEC (primary fossil energy consumption) A comparative energy analysis. Renew. Energy 2018, 117, 414–433, doi:10.1016/j.renene.2017.10.099. [CrossRef] [Google Scholar]
  21. Deason, W. Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost. Renew. Sustain. Energy Rev. 2018, 82, 3168–3178, doi:10.1016/j.rser.2017.10.026. [CrossRef] [Google Scholar]
  22. Hansen, K.; Breyer, C.; Lund, H. Status and perspectives on 100% renewable energy systems. Energy 2019, 175, 471–480, doi:10.1016/j.energy.2019.03.092. [CrossRef] [Google Scholar]
  23. Després, J.; Hadjsaid, N.; Criqui, P.; Noirot, I. Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools. Energy 2015, 80, 486–495, doi:10.1016/j.energy.2014.12.005. [CrossRef] [Google Scholar]
  24. Ćosić, B.; Krajačić, G.; Duić, N. A 100% renewable energy system in the year 2050: The case of Macedonia. Energy 2012, 48, 80–87, doi:10.1016/j.energy.2012.06.078. [CrossRef] [Google Scholar]
  25. Child, M.; Breyer, C. Vision and initial feasibility analysis of a recarbonised Finnish energy system for 2050. Renew. Sustain. Energy Rev. 2016, 66, 517–536, doi:10.1016/j.rser.2016.07.001. [CrossRef] [Google Scholar]
  26. Hansen, K.; Mathiesen, B.V.; Skov, I.R. Full energy system transition towards 100% renewable energy in Germany in 2050. Renew. Sustain. Energy Rev. 2019, 102, 1–13, doi:10.1016/j.rser.2018.11.038. [CrossRef] [Google Scholar]
  27. Lund, H. EnergyPLAN Advanced Energy Systems Analysis Computer Model. Aalborg Univ. Denmark 2015, 1, 1–114. [Google Scholar]
  28. EnergyPLAN Advanced Energy Systems Analysis Computer Model Documentation Version 14; [Google Scholar]
  29. Planning, S.E.; Vol, M. A technical and economic analysis of one potential pathway to a 100 % renewable energy system. Int. J. Sustain. Energy Plan. Manag. 2014, 01, 7–28. [Google Scholar]
  30. Lund, H.; Werner, S.; Wiltshire, R.; Svendsen, S.; Thorsen, J.E.; Hvelplund, F.; Mathiesen, B.V. 4th Generation District Heating (4GDH). Integrating smart thermal grids into future sustainable energy systems. Energy 2014, 68, 1–11, doi:10.1016/j.energy.2014.02.089. [CrossRef] [EDP Sciences] [Google Scholar]
  31. Lund, H.; Duic, N.; Østergaard, P.A.; Mathiesen, B.V. Smart energy systems and 4th generation district heating. Energy 2016, 110, 1–4, doi:10.1016/j.energy.2016.07.105. [CrossRef] [Google Scholar]
  32. Lund, H.; Østergaard, P.A.; Chang, M.; Werner, S.; Svendsen, S.; Sorknæs, P.; Thorsen, J.E.; Hvelplund, F.; Mortensen, B.O.G.; Mathiesen, B.V.; et al. The status of 4th generation district heating: Research and results. Energy 2018, 164, 147–159, doi:10.1016/j.energy.2018.08.206. [CrossRef] [Google Scholar]
  33. Connolly, D.; Lund, H.; Mathiesen, B. V; Werner, S.; Möller, B.; Persson, U.; Boermans, T.; Trier, D.; Østergaard, P.A.; Nielsen, S. Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. 2013, doi:10.1016/j.enpol.2013.10.035. [Google Scholar]
  34. Thellufsen, J.Z.; Nielsen, S.; Lund, H. Implementing cleaner heating solutions towards a future low-carbon scenario in Ireland. J. Clean. Prod. 2019, 214, 377–388, doi:10.1016/j.jclepro.2018.12.303. [CrossRef] [Google Scholar]
  35. Wiechers, E.; Persson, U.; Grundahl, L.; Connolly, D. Heat Roadmap Europe: Identifying local heat demand and supply areas with a European thermal atlas. 2018, doi:10.1016/j.energy.2018.06.025. [Google Scholar]
  36. Hansen, K.; Connolly, D.; Lund, H.; Drysdale, D.; Thellufsen, J.Z. Heat Roadmap Europe: Identifying the balance between saving heat and supplying heat. Energy 2016, 115, 1663–1671, doi:10.1016/j.energy.2016.06.033. [CrossRef] [Google Scholar]
  37. Mohammadi, A.; Mehrpooya, M. A comprehensive review on coupling different types of electrolyzer to renewable energy sources. Energy 2018, 158, 632–655, doi:10.1016/j.energy.2018.06.073. [CrossRef] [Google Scholar]
  38. De Santoli, L.; Lo Basso, G.; Bruschi, D. A small scale H2NG production plant in Italy: Techno-economic feasibility analysis and costs associated with carbon avoidance. Int. J. Hydrogen Energy 2014, 39, 6497–6517, doi:10.1016/j.ijhydene.2014.02.003. [CrossRef] [Google Scholar]
  39. Varone, A.; Ferrari, M. Power to liquid and power to gas: An option for the German Energiewende. 2015, doi:10.1016/j.rser.2015.01.049. [Google Scholar]
  40. Qadrdan, M.; Abeysekera, M.; Chaudry, M.; Wu, J.; Jenkins, N. Role of power-togas in an integrated gas and electricity system in Great Britain. Int. J. Hydrogen Energy 2015, 40, 5763–5775, doi:10.1016/j.ijhydene.2015.03.004. [CrossRef] [Google Scholar]
  41. Nastasi, B.; Lo Basso, G. Power-to-Gas integration in the Transition towards Future Urban Energy Systems. Int. J. Hydrogen Energy 2017, 42, 23933–23951, doi:10.1016/j.ijhydene.2017.07.149. [CrossRef] [Google Scholar]
  42. Jia, Q.S. On supply demand coordination in vehicle-to-grid A brief literature review. In Proceedings of the Proceedings 2018 33rd Youth Academic Annual Conference of Chinese Association of Automation, YAC 2018; Institute of Electrical and Electronics Engineers Inc., 2018; pp. 1083–1088. [Google Scholar]
  43. Kempton, W.; Tomić, J. Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy. J. Power Sources 2005, 144, 280–294, doi:10.1016/j.jpowsour.2004.12.022. [CrossRef] [Google Scholar]
  44. Esther, S.; Singh, S.K.; Goswami, A.K.; Sinha, N. Recent Challenges in Vehicle to Grid Integrated Renewable Energy System: A Review. In Proceedings of the Proceedings of the 2nd International Conference on Intelligent Computing and Control Systems, ICICCS 2018; Institute of Electrical and Electronics Engineers Inc., 2019; pp. 427–435. [Google Scholar]
  45. Lisovich, M.A.; Mulligan, D.K.; Wicker, S.B. Inferring personal information from demand-response systems. IEEE Secur. Priv. 2010, 8, 11–20, doi:10.1109/MSP.2010.40. [CrossRef] [Google Scholar]
  46. Mancini, F.; Romano, S.; Basso, G. Lo; Cimaglia, J.; Santoli, L. de How the Italian Residential Sector Could Contribute to Load Flexibility in Demand Response Activities: A Methodology for Residential Clustering and Developing a Flexibility Strategy. Energies 2020, 13, 3359, doi:10.3390/en13133359. [CrossRef] [Google Scholar]
  47. Mancini, F.; Nastasi, B. Energy retrofitting effects on the energy flexibility of dwellings. Energies 2019, 12, doi:10.3390/en12142788. [Google Scholar]
  48. Mancini, F.; Basso, G. Lo; De Santoli, L. Energy use in residential buildings: Characterisation for identifying flexible loads by means of a questionnaire survey. Energies 2019, 12, doi:10.3390/en12112055. [Google Scholar]
  49. Kim, J.H.; Shcherbakova, A. Common failures of demand response. Energy 2011, 36, 873–880, doi:10.1016/j.energy.2010.12.027. [CrossRef] [Google Scholar]
  50. Strbac, G. Demand side management: Benefits and challenges. Energy Policy 2008, 36, 4419–4426, doi:10.1016/j.enpol.2008.09.030. [CrossRef] [Google Scholar]
  51. Mancini, F.; Basso, G. Lo; Santoli, L. de Energy use in residential buildings: Impact of building automation control systems on energy performance and flexibility. Energies 2019, 12, 1–17, doi:10.3390/en12152896. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.