Open Access
Issue
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 06008
Number of page(s) 13
Section Internal Combustion Engines
DOI https://doi.org/10.1051/e3sconf/202019706008
Published online 22 October 2020
  1. Hofmann J, Guan D, Chalvatzis K, Huo H. Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China. Appl Energy 2016; 184: 995–1003. https://doi.org/10.1016/j.apenergy.2016.06.042. [CrossRef] [Google Scholar]
  2. Palmer K, Tate JE, Wadud Z, Nellthorp J. Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan. Appl Energy 2018; 209: 108–19. https://doi.org/10.1016/j.apenergy.2017.10.089. [CrossRef] [Google Scholar]
  3. Senecal PK, Leach F. Diversity in transportation: Why a mix of propulsion technologies is the way forward for the future fleet. Results Eng 2019; 4: 100060. https://doi.org/10.1016/j.rineng.2019.100060. [CrossRef] [Google Scholar]
  4. Wu G, Zhang X, Dong Z. Powertrain architectures of electrified vehicles: Review, classification and comparison. J Franklin Inst 2015; 352: 425–48. https://doi.org/10.1016/j.jfranklin.2014.04.018. [CrossRef] [Google Scholar]
  5. Zhuang W, Eben SL. A survey of powertrain con fi guration studies on hybrid electric vehicles 2020; 262. [Google Scholar]
  6. Onori S, Serrao L. On Adaptive-ECMS strategies for hybrid electric vehicles 2011:1–7. [Google Scholar]
  7. Michel P, Charlet A, Colin G, Chamaillard Y, Bloch G, Nouillant C. Catalytic converter modeling for optimal gasoline-HEV energy management. IFAC Proc Vol 2014;19: 6636–41. https://doi.org/10.3182/20140824-6-za-1003.01419. [Google Scholar]
  8. Guille A, Jeanneret B, Kéromnès A, Le L, Pélissier S. Energy management strategy to reduce pollutant emissions during the catalyst light-off of parallel hybrid vehicles 2020; 266. [Google Scholar]
  9. Benegiamo M, Valletta A, Carlucci P. A, Mulone V. Impact of Thermal Management of the Three-Way Catalyst on the Energy Efficiency of a P2 Gasoline FHEV, SAE Technical Paper 2020-37-0019, 2020. [Google Scholar]
  10. Ramanathan K, Sharma CS. Kinetic parameters estimation for three way catalyst modeling. Ind Eng Chem Res 2011; 50: 9960–79. https://doi.org/10.1021/ie200726j. [CrossRef] [Google Scholar]
  11. Paganelli G. General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles. JSAE Rev 2001;22:511–8. https://doi.org/10.1016/s0389-4304(01)00138-2. [CrossRef] [Google Scholar]
  12. Sundstrom O, Guzzella L. A generic dynamic programming Matlab function. 2009 IEEE Int. Conf. Control Appl., IEEE; 2009, p. 1625–30. https://doi.org/10.1109/CCA.2009.5281131. [Google Scholar]
  13. Ambuhl D. Energy Management Strategies For Hybrid Electric Vehicles Presented by. Eth Zurich, 2009. [Google Scholar]
  14. Lee S, Bae C, Lee Y, Han T. Effects of engine operating conditions on catalytic converter temperature in an SI engine. SAE Tech Pap 2002. https://doi.org/10.4271/2002-01-1677. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.