Open Access
Issue
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 08002
Number of page(s) 22
Section Environmental Sustainability and Renewable Energy Sources
DOI https://doi.org/10.1051/e3sconf/202019708002
Published online 22 October 2020
  1. Guandalini G.; Robinius M.; Grube T.; Campanari S.; Stolten D. Long-term power-to-gas potential from wind and solar power: A country analysis for Italy. Int. J. Hydrogen Energy 2017, 42, 13389–13406, doi:10.1016/j.ijhydene.2017.03.081. [CrossRef] [Google Scholar]
  2. Lyseng B.; Niet T.; English J.; Keller V.; Palmer-Wilson K.; Robertson B.; Rowe A.; Wild P. System-level power-to-gas energy storage for high penetrations of variable renewables. Int. J. Hydrogen Energy 2018, 43, 1966–1979, doi:10.1016/j.ijhydene.2017.11.162. [CrossRef] [Google Scholar]
  3. Groppi D.; Astiaso Garcia, D.; Lo Basso G.; Cumo F.; De Santoli L. Analysing economic and environmental sustainability related to the use of battery and hydrogen energy storages for increasing the energy independence of small islands. Energy Convers. Manag. 2018, 177, 64–76, doi:10.1016/j.enconman.2018.09.063. [CrossRef] [Google Scholar]
  4. Nastasi B.; Lo Basso G. Power-to-Gas integration in the Transition towards Future Urban Energy Systems. Int. J. Hydrogen Energy 2017, 42, 23933–23951, doi:10.1016/j.ijhydene.2017.07.149. [CrossRef] [Google Scholar]
  5. Nastasi B.; Lo Basso G.; Astiaso Garcia, D.; Cumo F.; De Santoli L. Power-togas leverage effect on power-to-heat application for urban renewable thermal energy systems. Int. J. Hydrogen Energy 2018, 23076–23090, doi:10.1016/j.ijhydene.2018.08.119. [Google Scholar]
  6. Ajanovic A.; Hiesl A.; Haas R. On the role of storage for electricity in smart energy systems. Energy 2020, 200, doi:10.1016/j.energy.2020.117473. [Google Scholar]
  7. Lund H.; Duic N.; Østergaard, P.A.; Mathiesen B.V. Perspectives on Smart Energy Systems from the SES4DH 2018 conference. Energy 2020, 190. [Google Scholar]
  8. Bačeković, I.; Østergaard, P.A. Local smart energy systems and cross-system integration. Energy 2018, 151, 812–825, doi:10.1016/j.energy.2018.03.098. [CrossRef] [Google Scholar]
  9. Bačeković, I.; Østergaard, P.A. A smart energy system approach vs a nonintegrated renewable energy system approach to designing a future energy system in Zagreb. Energy 2018, 155, 824–837, doi:10.1016/j.energy.2018.05.075. [CrossRef] [Google Scholar]
  10. Mancini F.; Basso G. Lo How climate change affects the building energy consumptions due to cooling, heating, and electricity demands of Italian residential sector. Energies 2020, 13, doi:10.3390/en13020410. [CrossRef] [PubMed] [Google Scholar]
  11. Mancini F.; Romano S.; Lo Basso G.; Cimaglia J.; De Santoli L. How the Italian Residential Sector Could Contribute to Load Flexibility in Demand Response Activities: A Methodology for Residential Clustering and Developing a Flexibility Strategy. Energies 2020, 13, 3359, doi:10.3390/en13133359. [CrossRef] [Google Scholar]
  12. Ogbe E.; Mukherjee U.; Fowler M.; Almansoori A.; Elkamel A. Integrated Design and Operation Optimization of Hydrogen Commingled with Natural Gas in Pipeline Networks. Ind. Eng. Chem. Res. 2020, 59, 1584–1595, doi:10.1021/acs.iecr.9b04550. [CrossRef] [Google Scholar]
  13. Guandalini G.; Colbertaldo P.; Campanari S. Dynamic modeling of natural gas quality within transport pipelines in presence of hydrogen injections. Appl. Energy 2017, 185, 1712–1723, doi:10.1016/j.apenergy.2016.03.006. [CrossRef] [Google Scholar]
  14. Quarton C.J.; Samsatli S. Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling? Renew. Sustain. Energy Rev. 2018, 98, 302–316, doi:10.1016/J.RSER.2018.09.007. [CrossRef] [Google Scholar]
  15. De Santoli L.; Paiolo R.; Lo Basso G. An overview on safety issues related to hydrogen and methane blend applications in domestic and industrial use. In Proceedings of the Energy Procedia; 2017; Vol. 126, pp. 297–304. [CrossRef] [Google Scholar]
  16. Zhou S.; Sun K.; Wu Z.; Gu W.; Wu G.; Li Z.; Li J. Optimized operation method of small and medium-sized integrated energy system for P2G equipment under strong uncertainty. Energy 2020, 199, doi:10.1016/j.energy.2020.117269. [Google Scholar]
  17. Park C.; Kim C.; Choi Y.; Lee J. Operating strategy for exhaust gas reduction and performance improvement in a heavy-duty hydrogen-natural gas blend engine. Energy 2013, 50, 262–269, doi:10.1016/j.energy.2012.10.048. [CrossRef] [Google Scholar]
  18. Correa G.; Muñoz, P.; Falaguerra T.; Rodriguez C.R. Performance comparison of conventional, hybrid, hydrogen and electric urban buses using well to wheel analysis. Energy 2017, 141, 537–549, doi:10.1016/j.energy.2017.09.066. [CrossRef] [Google Scholar]
  19. Mehr A.S.; Moharramian A.; Hossainpour S.; Pavlov D.A. Effect of blending hydrogen to biogas fuel driven from anaerobic digestion of wastewater on the performance of a solid oxide fuel cell system. Energy 2020, 202, doi:10.1016/j.energy.2020.117668. [Google Scholar]
  20. Wu H.W.; Lin K.W. Hydrogen-rich syngas production by reforming of ethanol blended with aqueous urea using a thermodynamic analysis. Energy 2019, 166, 541–551, doi:10.1016/j.energy.2018.10.122. [CrossRef] [Google Scholar]
  21. Deymi-Dashtebayaz M.; Ebrahimi-Moghadam A.; Pishbin S.I.; Pourramezan M. Investigating the effect of hydrogen injection on natural gas thermo-physical properties with various compositions. Energy 2019, 167, 235–245, doi:10.1016/j.energy.2018.10.186. [CrossRef] [Google Scholar]
  22. De Santoli L.; Paiolo R.; Lo Basso G. Energy-environmental experimental campaign on a commercial CHP fueled with H2NG blends and oxygen enriched air hailing from on-site electrolysis. Energy 2020, 195, doi:10.1016/j.energy.2019.116820. [Google Scholar]
  23. di Gaeta A.; Reale F.; Chiariello F.; Massoli P. A dynamic model of a 100 kW micro gas turbine fuelled with natural gas and hydrogen blends and its application in a hybrid energy grid. Energy 2017, 129, 299–320, doi:10.1016/j.energy.2017.03.173. [CrossRef] [Google Scholar]
  24. De Santoli L.; Lo Basso G.; Barati S.; D’Ambra S.; Fasolilli C. Seasonal energy and environmental characterization of a micro gas turbine fueled with H2NG blends. Energy 2020, 193, doi:10.1016/j.energy.2019.116678. [Google Scholar]
  25. Lo Basso G.; Nastasi B.; Astiaso Garcia, D.; Cumo F. How to handle the Hydrogen enriched Natural Gas blends in combustion efficiency measurement procedure of conventional and condensing boilers. Energy 2017, 123, 615–636, doi:10.1016/j.energy.2017.02.042. [CrossRef] [Google Scholar]
  26. Demir H.; Mobedi M.; Ülkü, S. A review on adsorption heat pump: Problems and solutions. Renew. Sustain. Energy Rev. 2008, 12, 2381–2403, doi:10.1016/j.rser.2007.06.005. [CrossRef] [Google Scholar]
  27. Wu W.; Wang B.; Shi W.; Li X. An overview of ammonia-based absorption chillers and heat pumps. Renew. Sustain. Energy Rev. 2014, 31, 681–707, doi:10.1016/j.rser.2013.12.021. [CrossRef] [Google Scholar]
  28. Alahmer A.; Ajib S.; Wang X. Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review. Renew. Sustain. Energy Rev. 2019, 99, 138–158, doi:10.1016/j.rser.2018.10.004. [CrossRef] [Google Scholar]
  29. Pinheiro J.M.; Salústio S.; Rocha J.; Valente A.A.; Silva C.M. Adsorption heat pumps for heating applications. Renew. Sustain. Energy Rev. 2020, 119, doi:10.1016/j.rser.2019.109528. [Google Scholar]
  30. De Santoli L.; Lo Basso G.; Nastasi B. The Potential of Hydrogen Enriched Natural Gas deriving from Power-to-Gas option in Building Energy Retrofitting. Energy Build. 2017, 149, 424–436, doi:10.1016/j.enbuild.2017.05.049. [CrossRef] [Google Scholar]
  31. Hamdy M.; Askalany A.A.; Harby K.; Kora N. An overview on adsorption cooling systems powered by waste heat from internal combustion engine. Renew. Sustain. Energy Rev. 2015, 51, 1223–1234, doi:10.1016/j.rser.2015.07.056. [CrossRef] [Google Scholar]
  32. Leonzio G. Solar systems integrated with absorption heat pumps and thermal energy storages: state of art. Renew. Sustain. Energy Rev. 2017, 70, 492–505, doi:10.1016/j.rser.2016.11.117. [CrossRef] [Google Scholar]
  33. Jelmer Vellema Gas absorption heat pumps in the built environment; 2012; [Google Scholar]
  34. Chua H.T.; Toh H.K.; Ng K.C. Thermodynamic modeling of an ammonia-water absorption chiller. In Proceedings of the International Journal of Refrigeration; 2002; Vol. 25, pp. 896–906. [CrossRef] [Google Scholar]
  35. Velázquez N.; Best R. Methodology for the energy analysis of an air cooled GAX absorption heat pump operated by natural gas and solar energy. Appl. Therm. Eng. 2002, 22, 1089–1103, doi:10.1016/S1359-4311(02)00028-5. [CrossRef] [Google Scholar]
  36. Engineering M.C. Thermophysical Properties of NH3+H2O Solutions for the Industrial Designof Absorption Refrigeration Equipment. 2004. [Google Scholar]
  37. Pátek J.; Klomfar J. Simple functions for fast calculations of selected thermodynamic properties of the ammonia-water system. Int. J. Refrig. 1995, 18, 228–234, doi:10.1016/0140-7007(95)00006-W. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.