Open Access
Issue
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 11005
Number of page(s) 15
Section Turbomachinery
DOI https://doi.org/10.1051/e3sconf/202019711005
Published online 22 October 2020
  1. P. Colonna, E. Casati, C. Trapp, T. Mathijssen, J. Larjola, T. Turunen-Saarestie A. Uusitalo, «Organic Rankine Cycle Power Systems: From the Concept to Current Technology, Applications, and an Outlook to the Future,» Journal of Engineering for Gas Turbines and Power, vol. 137, n. 10, pp. 100801-1-100801-19, (2015) [CrossRef] [Google Scholar]
  2. S. Quoilin, M. Van Den Broek, S. Declaye, P. Dewallefe V. Lemort, «Techno-economic survey of Organic Rankine Cycle (ORC) systems» Renewable and Sustainable Energy Reviews, vol. 22, pp. 168--186, (2013). [Google Scholar]
  3. K. Rahbar, S. Mahmoud, R. K. Al-Dadah, N. Moazamie S. A. Mirhadizadeh, «Review of organic Rankine cycle for small-scale applications» Energy conversion and management, vol. 134, pp. 135--155, (2017). [CrossRef] [Google Scholar]
  4. E. Macchi, «Theoretical basis of the Organic Rankine Cycle» in Organic Rankine Cycle (ORC) Power Systems, Woodhead Publishing, pp. 3-24, (2017). [CrossRef] [Google Scholar]
  5. V. Mounier, L. E. OlmedoeJ. Schiffmann, «Small scale radial inflow turbine performance and pre-design maps for Organic Rankine Cycles» Energy, vol. 143, pp. 1072-1084, (2018). [CrossRef] [Google Scholar]
  6. L. Da Lio, G. Manentee A. Lazzaretto, «A mean-line model to predict the design efficiency of radial inflow turbines in organic Rankine cycle (ORC) systems» Applied Energy, vol. 205, pp. 187-209, (2017). [CrossRef] [Google Scholar]
  7. R. H. Aungier, «Aerodynamic Performance Analysis of Radial-Inflow Turbines» in Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis, ASME, (2006). [Google Scholar]
  8. R. H. Aungier, «Preliminary Aerodynamic Design of Radial-Inflow Turbine Stages» in Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis, ASME, (2006). [Google Scholar]
  9. S. Bahamonde, M. Pini, C. De Servi, A. Rubinoe P. Colonna, «Method for the preliminary fluid dynamic design of high-temperature mini-organic rankine cycle turbines,» Journal of Engineering for Gas Turbines and Power, vol. 139, n. 8, p. 082606, (2017). [CrossRef] [Google Scholar]
  10. A. Perdichizzie G. Lozza, «Design criteria and efficiency prediction for radial inflow turbines» in ASME 1987 International Gas Turbine Conference and Exhibition, (1987). [Google Scholar]
  11. D. Fiaschi, G. Manfridae F. Maraschiello, «Thermo-fluid dynamics preliminary design of turbo-expanders for ORC cycles» Applied Energy, vol. 97, pp. 601-608, (2012). [CrossRef] [Google Scholar]
  12. C. M. De Servi, M. Burigana, M. Pinie P. Colonna, «Design Method and Performance Prediction for Radial-Inflow Turbines of High-Temperature Mini-Organic Rankine Cycle Power Systems» Journal of Engineering for Gas Turbines and Power, vol. 141, n. 9, (2019). [PubMed] [Google Scholar]
  13. P. Klonowicz, F. Heberle, M. Preißingere D. Brüggemann, «Significance of loss correlations in performance prediction of small scale, highly loaded turbine stages working in Organic Rankine Cycles» Energy, vol. 72, pp. 322-330, (2014). [CrossRef] [Google Scholar]
  14. R. Perskye E. Sauret, «Loss models for on and off-design performance of radial inflow turbomachinery» Applied Thermal Engineering, vol. 150, pp. 1066-1077, (2019). [CrossRef] [Google Scholar]
  15. F. Alshammari, A. Karvountzis-Kontakiotis, A. Pesiridise P. Giannakakis, «Off-design performance prediction of radial turbines operating with ideal and real working fluids» Energy Conversion and Management, vol. 171, pp. 1430-1439, (2018). [CrossRef] [Google Scholar]
  16. A. Meroni, M. Robertson, R. Martinez-Botase F. Haglind, «A methodology for the preliminary design and performance prediction of high-pressure ratio radial-inflow turbines» Energy, vol. 164, pp. 1062-1078, (2018). [CrossRef] [Google Scholar]
  17. A. Cappiello, R. Tuccillo, M. C. Camerettie A. Pesyridis, «Axial Flow Turbine Concept for Conventional and e-Turbocharging» in 14th International Conference on Engines & Vehicles, (2019). [Google Scholar]
  18. I. H. Bell, J. Wronski, S. Quoiline V. Lemort, «Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp» Industrial & Engineering Chemistry Research, vol. 53, n. 6, pp. 2498--2508, (2014). [CrossRef] [PubMed] [Google Scholar]
  19. A. P. S. Wheelere J. Ong, «The Role of Dense Gas Dynamics on Organic Rankine Cycle Turbine Performance» Journal of Engineering for Gas Turbines and Power, vol. 135, n. 10, (2013). [Google Scholar]
  20. M. T. White, C. N. Markidese A. I. Sayma, «Working-Fluid Replacement in Supersonic Organic Rankine Cycle Turbines» Journal of Engineering for Gas Turbines and Power, vol. 140, n. 9, (2018). [Google Scholar]
  21. N. Anand, S. Vitale, M. Pini, G. J. Oteroe R. Pecnik, «Design Methodology for Supersonic Radial Vanes Operating in Nonideal Flow Conditions» Journal of Engineering for Gas Turbines and Power, vol. 141, n. 2, (2018). [Google Scholar]
  22. A. Shapiroe G. Edelman, «Method of Characteristics for Two-dimensional Supersonic Flow: Graphical and Numerical Procedures» Massachusetts Institute of Technology, (1947). [Google Scholar]
  23. A. C. Aldoe B. M. Argrow, «Supersonic minimum length nozzle design for dense gases» in The Fifth Annual Thermal and Fluids Analysis Workshop, (1993). [Google Scholar]
  24. D. G. Ainleye G. C. R. Mathieson, «A Method of Performance Estimation for Axial Flow Turbines» British ARC R&M 2974, (1951). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.