Open Access
Issue
E3S Web Conf.
Volume 198, 2020
2020 10th Chinese Geosynthetics Conference & International Symposium on Civil Engineering and Geosynthetics (ISCEG 2020)
Article Number 01042
Number of page(s) 6
Section Geosynthetics Applied Design Theory and Method
DOI https://doi.org/10.1051/e3sconf/202019801042
Published online 26 October 2020
  1. Zhao J. Carbon nanofiber and it’s applications[J]. Hi-Tech Fiber and Application, 2003, 28(2): 7-10. (in Chinese). [Google Scholar]
  2. Zheng J, Zhang X, Li P, et al. Application of carbon nanofibers in chemical power source[J]. Chinese Journal of Power Sources, 2011, 35(8): 1028-1030.(in Chinese) [Google Scholar]
  3. Celebi S, Nijhuis T A, Van der Schaaf J, et al. Carbon nanofiber growth on carbon paper for proton exchange membrane fuel cells[J]. Carbon, 2011, 49(2): 501-507. [Google Scholar]
  4. Zhang S, Song R, Wang C, et al. Experimental Investigation of the Compressive Behavior of RCC Materials in Civil Engineering, 2018, 30(4): 04018057. [CrossRef] [Google Scholar]
  5. Ma Q, Gao C. Effect of Basalt Fiber on the Dynamic Mechanical Properties of Cement-Soil in SHPB Test[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018185. [CrossRef] [Google Scholar]
  6. Lee S, Kim K M, Park J, et al. Pure rate effect on the concrete compressive strength in the split Hopkinson pressure bar test[J]. International Journal of Impact Engineering, 2018, 113: 191-202. [Google Scholar]
  7. Ren W, Xu J, Su H. Dynamic compressive behavior of basalt fiber reinforced concrete after exposure to elevated temperatures[J]. Fire and materials, 2016, 40(5): 738-755. [Google Scholar]
  8. Su H, Xu J. Dynamic compressive behavior of ceramic fiber reinforced concrete under impact load[J]. Construction and Building Materials, 2013, 45: 306-313. [Google Scholar]
  9. Luo X, Xu J. Dynamic splitting-tensile testing of highly fluidised geopolymer concrete [J]. Magazine of Concrete Research, 2013, 65(14): 837-843. [CrossRef] [Google Scholar]
  10. Lambert D E, Ross C A. Strain rate effects on dynamic fracture and strength [J]. International Journal of Impact Engineering, 2000, 24(10): 985-998. [Google Scholar]
  11. Chen X, Ge L, Yuan H, et al. Effect of Prestatic Loading on Dynamic Tensile Strength of Concrete under High Strain Rates[J]. Journal of Materials in Civil Engineering, 2016, 28(12): 06016018. [CrossRef] [Google Scholar]
  12. Wang Q Z, Jia X M, Kou S Q, et al. The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: Analytical and numerical results[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 245-253. [Google Scholar]
  13. Chen X, Ge L, Chen C, et al. Influence of Initial Static Splitting Tensile Loading on Dynamic Compressive Strength of Concrete Cores under High Strain Rates[J]. Journal of Performance of Constructed Facilities, 2016, 30(6): 06016002. [CrossRef] [Google Scholar]
  14. Feng W, Liu F, Yang F, et al. Experimental study on dynamic split tensile properties of rubber concrete[J]. Construction and Building Materials, 2018, 165: 675-687. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.