Open Access
Issue
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01016
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202020101016
Published online 23 October 2020
  1. Wichur, A. (2007). Uwagi o projektowaniu technologii zamrażania górotworu dla potrzeb głębienia szybów. Górnictwo i Geoinżynieria, (3), 447-458. [Google Scholar]
  2. Czaja, P. (2010). Ocena rozwiązań projektowych likwidacji szybów zastosowanych w procesie restrukturyzacji polskiego górnictwa węglowego. Budownictwo Górnicze i Tunelowe, (3), 37-51. [Google Scholar]
  3. Sadaghiani, M.H., & Bieniawski, Z.T. (1990). Geotechnical design of mine shafts. In 31th U.S. Symposium on Rock Mechanics (pp. 823-830). Golden, Colorado. [Google Scholar]
  4. Bruneau, G., Tyler, D., Hadjigeorgiou, J., & Potvin, Y. (2003). Influence of faulting on a mine shaft - a case study: part I - Background and instrumentation. International Journal of Rock Mechanics and Mining Sciences, 40(1),95-111. https://doi.org/10.1016/s1365-1609(02)00115-6 [CrossRef] [Google Scholar]
  5. Ortlepp, W.D., Joughin, W.C., Ward, A.K., & Thompson J. (2008). Reinforcement support of concrete shaft lining in Westonaria formation lava in the Ezulwini vertical shaft system. In 6th International Symposium on Ground Support in Mining and Civil Construction (pp. 561-580). Cape Town, South Africa. [Google Scholar]
  6. Walton, G., Kim, E., Sinha, S., Sturgis, G., & Berberick, D. (2018). Investigation of shaft stability and anisotropic deformation in a deep shaft in Idaho, United States. International Journal of Rock Mechanics and Mining Sciences, (105), 160-171. https://doi.org/10.1016/iiirmms.2018.03.017 [CrossRef] [Google Scholar]
  7. Kovalevs’ka, I., Vivcharenko, V., & Snigur, V. (2013). Specifics of percarbonic rock mass displacement in longwalls end areas and extraction workings. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 29-34. https://doi.org/10.1201/b16354-6 [Google Scholar]
  8. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (Eds.). (2015). New Developments in Mining Engineering 2015. London, United Kingdom: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b19901 [Google Scholar]
  9. Hartman, H.L. (ed.) (1992). SME Mining Engineering Handbook. Society for Mining, Metallurgy, and Exploration. Sacramento, California: Society for Mining, Metallurgy, and Exploration. [Google Scholar]
  10. Pariseau, W.G. (2007). Design Analysis in Rock Mechanics. Taylor & Francis Group. [Google Scholar]
  11. De la Vergne, J. (2003) Hard Rock Miner’s Handbook. 3rd Edition. McIntosh Engineering. North Bay. Ontario, Canada. [Google Scholar]
  12. Tao, H., Weihao, Y., Zhijiang, Y., Chi, Z., & Dongliang, B. (2011). Monitoring Study of Shaft Lining Concrete Strain in Freezing Water-Bearing Soft Rock During Mine Shaft Construction Period in West China. Procedia Engineering, (26), 992-1000.https://doi.org/10.1016/i.proeng.2011.11.2266 [Google Scholar]
  13. Hegemann, J. (1981). A new concept for sinking freeze shafts into great depths. Engineering Geology, 18(1-4), 385-393. https://doi.org/10.1016/0013-7952(81)90076-4 [Google Scholar]
  14. PN-G-05015. (1997). Szyby górnicze - obudowa - Zasady projektowania.Warsaw: Polski Komitet Normalizacyjny. [Google Scholar]
  15. Majcherczyk, T., Małkowski, P., & Niedbalski, Z. (2008). Rock mass movements around development workings in various density of standing-and-roof-bolting support. Journal of Coal Science and Engineering (China), 14(3), 356-360. https://doi.org/10.1007/s12404-008-0078-1 [CrossRef] [Google Scholar]
  16. Fabich, S., Bauer, J., Rajczakowska, M., & Świtoń, S. (2015). Design of the shaft lining and shaft stations for deep polymetallic ore deposits: Victoria Mine case study. Mining Science, (22), 127146. https://doi.org/10.5277/msc152213 [Google Scholar]
  17. Bobek, R., Śledź, T., Twardokęs, J., Ratajczak, A., & Głuch, P. (2016) Problemy stateczności obudowy szybów w świetle doświadczeń KWK Knurów - Szczygłowice. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, (94), 41-52. [Google Scholar]
  18. PN-EN 12504-1:2009. (2009). Testing concrete in structures. Part 1. Cored specimens. Taking, examining and testing in compression. Comite Europeen de Normalisation. [Google Scholar]
  19. PN-EN 12504-2:2002. (2002). Testing concrete in structures. Part 2. Non-destructive testing. Determination of rebound number. [Google Scholar]
  20. PN-EN 12504-3:2006. (2006). Testing concrete in structures. Part 3. Determination of pull-out force. [Google Scholar]
  21. PN-EN 12504-4:2005. (2005). Testing concrete in structures. Part 4. Determination of ultrasonic pulse. [Google Scholar]
  22. Bock, S. (2006) Metody badań wytrzymałościowych obudowy szybów kopalnianych. Prace Naukowe GIG: Górnictwo i Środowisko, (3), 23-41. [Google Scholar]
  23. Stasica, J. (2017). Nowoczesne metody badań i oceny stanu technicznego obudów szybów górniczych. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, (101), 85-99. [Google Scholar]
  24. ROW Mine. (2018). Technical Documentation of the Shaft VII repair (unpublished). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.