Open Access
Issue
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01020
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202020101020
Published online 23 October 2020
  1. Medunić, G., Mondol, D., Radenović, A., Nazir, S. (2018) Review of the latest research on coal, environment, and clean technologies. Rudarsko Geolosko Naftni Zbornik, (33), 13-21. https://doi.org/10.17794/rgn.2018.3.2 [CrossRef] [Google Scholar]
  2. Sobczyk, E.J., Kaczmarek, J., Fijorek, K., & Kopacz, M. (2020) Efficiency and financial standing of coal mining enterprises in Poland in terms of restructuring course and effects. Gospodarka Surowcami Mineralnymi — Mineral Resources Management, 36(2), 127-152 [Google Scholar]
  3. Smil, V. (2015). A new world of energy. The Cambridge World History, 7(1),164-184. [CrossRef] [Google Scholar]
  4. Gorova, A., Pavlychenko, A., Borysovs’ka, O., & Krups’ka, L. (2013). The development of methodology for assessment of environmental risk degree in mining regions. Annual Scientific- Technical Collection — Mining of Mineral Deposits 2013, 207-209. https://doi.org/10.1201/b16354-38 [Google Scholar]
  5. Bondarenko, V.I., Kharin, Ye.N., Antoshchenko, N.I., & Gasyuk, R.L. (2013). Osnovnye nauchnye polozheniya prognoza dinamiki metanovydeleniya pri otrabotke gazonosnykh ugol’nykh plastov. Naukovyi Visnyk NHU, (5), 24-30. [Google Scholar]
  6. Law, B.E., Ulmishek, G.F., Clayton, J.L., Kabyshev, B.P., Pashova, N.T., & Krivosheya, V.A. (1998). Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine. Oil and Gas Journal, 96(47),74-78. [Google Scholar]
  7. Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Collection - Mining of Mineral Deposits, 203-205. https://doi.org/10.1201/b16354-37 [Google Scholar]
  8. Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.H., & Cabana, E.C. (2017). Formuvannia teplovykh poliv enerhokhimichnym kompleksom z hazyfikatsii vuhillia. Naukovyi Visnyk NHU, (5), 36-42. [Google Scholar]
  9. Falshtynskyi, V., Saik, P., Lozynskyi, V., Dychkovskyi, R., & Petlovanyi, M. (2018). Innovative aspects of underground coal gasification technology in mine conditions. Mining of Mineral Deposits, 12(2),68-75. https://doi.org/10.15407/mining12.02.068 [CrossRef] [Google Scholar]
  10. Pivnyak, G., Razumny, Y., & Zaika, V. (2009). The problems of power supply and power saving in the mining industry of Ukraine. Archives of Mining Sciences, (54), 5-12. [Google Scholar]
  11. Małkowski, P., Niedbalski, Z., & Hydzik-Wiśniewska, J. (2013). The Change of Structural and Thermal Properties of Rocks Exposed to High Temperatures in the Vicinity of Designed GeoReactor. Archives of Mining Sciences, 58(2),465-480. https://doi:10.2478/amsc-2013-0031 [CrossRef] [Google Scholar]
  12. Majkherchik, T., Gajko, G.I., Malkowski, P. (2002). Deformation process around a heading investigation when front of longwall face advancing. Ugol (11), 27-29 [Google Scholar]
  13. Vladyko, O. (2012). Imitating modeling stability of mine workings. Geomechanical Processes During Underground Mining, 147-150. https://doi.org/10.1201/b13157-26 [CrossRef] [Google Scholar]
  14. Dreus, A.Yu., Sudakov, A.K., Kozhevnikov, A.A., Vakhalin, Yu.N. (2016). Study on thermal strength reduction of rock formation in the diamond core drilling process using pulse flushing mode. Naukovyi VisnykNatsionalnoho Hirnychoho Universytetu, (3), 5-10. [Google Scholar]
  15. Dychkovskyi, R.O. (2015). Forming the bilayer artificially created shell of georeactor in underground coal well gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 37-42. [Google Scholar]
  16. Rakishev, B. R., & Galiev, D. A. (2015). Optimization of the ore flow quality characteristics in the quarry in road-rail transport. Metallurgical and Mining Industry, 7(4),356-362. [Google Scholar]
  17. Taran, I.A. & Klymenko, I.Yu. (2013). Transfer ratio of double-split transmissions in case of planetary gear input. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66. [Google Scholar]
  18. Taran, I.A., & Klymenko, I.Y., (2014). Innovative mathematical tools for benchmarking transmissions of transport vehicles. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3), 76-81. [Google Scholar]
  19. Caceres, E., & Alca, J.J. (2016). Rural Electrification Using Gasification Technology: Experiences and Perspectives. IEEE Latin America Transactions, 14(7),3322-3328. https://doi.org/10.1109/tla.2016.7587637 [CrossRef] [Google Scholar]
  20. Caceres, E., & Alca, J. J. (2016). Potential For Energy Recovery From a Wastewater Treatment Plant. IEEE Latin America Transactions, 14(7),3316-3321. [CrossRef] [Google Scholar]
  21. Bondarenko, V., & Dychkovskiy, R. (2006). Methods of extraction of thin and rather thin coal seams in the works of the scientists of the underground mining faculty (National Mining Uuniversity). New Technological Solutions in Underground Mining International Mining Forum, 21-25. https://doi.org/10.1201/noe0415401173.ch3 [Google Scholar]
  22. Dychkovskyi, R., Vladyko, O., Maltsev, D., & Caceres Cabana, E. (2018). Some aspects of the compatibility of mineral mining technologies. Rudarsko Geolosko Naftni Zbornik, 55(4),73-82. https://doi.org/10.17794/rgn.2018A7 [Google Scholar]
  23. Chernai, A.V., Sobolev, V.V., Chernai, V.A., Ilyushin, M.A., & Dlugashek, A. (2003). Laser ignition of explosive compositions based on di-(3-hydrazino-4-amino-1,2,3-triazole)-copper(II) perchlorate. Combustion, Explosion and Shock Waves, 39(3), 335-339. [CrossRef] [Google Scholar]
  24. Sobolev, V. (2020). Reasons for breaking of chemical bonds of gas molecules during movement of explosion products in cracks formed in rock mass. International Journal of Mining Science and Technology, 30(2),265-269. https://doi.org/10.1016/uimst2020.01.002 [Google Scholar]
  25. Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K., & Cabana, E. (2019). Some aspects of modern vision for geoenergy usage. E3S Web of Conferences, (123), 01010. [CrossRef] [EDP Sciences] [Google Scholar]
  26. Beshta, O.S. (2012). Electric drives adjustment for improvement of energy efficiency of technological processes. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 98-107. [Google Scholar]
  27. Dychkovskyi, R.O. (2015). Determination of the rock subsidence spacing in the well underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 30-36 [Google Scholar]
  28. Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., & Malanchuk, Ye.Z. (2016). Experimental study of the influence of crossing the disjunctive geological faults on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5). 21-29. [Google Scholar]
  29. Falshtyns’kyy, V., Dychkovs’kyy, R., Lozyns’kyy, V., & Saik, P. (2013). Justification of the gasification channel length in underground gas generator. Annual Scientific-Technical Collection - Mining of Mineral Deposits, 125-132. https://doi.org/10.1201/b16354-22 [Google Scholar]
  30. Griadushchiy, Y., Korz, P., Koval, O., Bondarenko, V. (2007). Advanced Experience and Direction of Mining of Thin Coal Seams in Ukraine. Technical, Technological and Economical Aspects of Thin-Seams Coal Mining. https://doi:10.1201/noe0415436700.ch1 [Google Scholar]
  31. Cabana, E. (2018). A concept to use energy of air flows of technogenic area of mining enterprises. E3S Web of Conferences, 60 https://doi.org/10.1051/e3sconf/20186000004 [Google Scholar]
  32. Dychkovskyi, R.O., Avdiushchenko, A.S., Falshtynskyi, V.S., Saik, P.B. (2013). On the issue of estimation of the coal mine extraction area economic efficiency. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 107-114. [Google Scholar]
  33. Gorova, A., Pavlychenko, A., Kulyna, S., & Shkremetko, O. (2012). Ecological problems of postindustrial mining areas. Geomechanical Processes During Underground Mining, 35-40. https://doi:10.1201/b13157-7 [CrossRef] [Google Scholar]
  34. Sarycheva, L. (2003). Using GMDH in ecological and socio-economical monitoring problems. Systems Analysis Modelling Simulation, 43(10),1409-1414. [Google Scholar]
  35. Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes During Underground Mining, 41-44. https://doi.org/10.1201/b13157-8 [CrossRef] [Google Scholar]
  36. Gornostayev, S.S., Crocket, J.H., Mochalov, A.G., & Laajoki, K.V.O. (1999). The platinum- group minerals of the Baimka placer deposits, Aluchin horst, Russian Far East. Canadian Mineralogist, 37(5),1117-1129. [Google Scholar]
  37. Shashenko, A., Gapieiev, S., Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2),341-348. [Google Scholar]
  38. Khomenko, O.Ye. (2012). Implementation of energy method in study of zonal disintegration of rocks. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 44-54. [Google Scholar]
  39. Kosobokov, O. (2018). A modern vision of simulation modelling in mining and near mining activity. E3S Web of Conferences, (60), 00014. https://doi.org/10.1051/e3sconf/20186000014 [Google Scholar]
  40. Vlasova, E., Kovalenko, V., Kotok, V., & Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphatecoating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5(5(83)), 33-39. doi:https:10.15587/1729-4061.2016.79559 [Google Scholar]
  41. Pivnyak, G.G., Pilov, P.I., Bondarenko, V.I., Surgai, N.S., & Tulub, S.B. (2005). Development of coal industry: The part of the power strategy in the Ukraine. Gornyi Zhurnal, (5), 14-17. [Google Scholar]
  42. Smoliński, A. (2018). Mathematical and Geomechanical Model in Physical and Chemical Processes of Underground Coal Gasification. Solid State Phenomena, (277), 1-16. https://doi.org/10.4028/www.scientific.net/ssp.277.1 [Google Scholar]
  43. Sotskov, V., & Saleev, I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overworking. Annual Scientific-Technical Collection - Mining of Mineral Deposits, 197-201. [CrossRef] [Google Scholar]
  44. Khalymendyk, I., & Baryshnikov, A. (2018). The mechanism of roadway deformation in conditions of laminated rocks. Journal of Sustainable Mining, 17(2),41-47. [CrossRef] [Google Scholar]
  45. Su, C., & Hu, Z. (2017). Reliability assessment for Chinese domestic wind turbines based on data mining techniques. Wind Energy, 21(3),198-209. https://doi:10.1002/we.2155 [Google Scholar]
  46. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques And Technologies In Mining, 193-197. https://doi:10.1201/b11329-32 [CrossRef] [Google Scholar]
  47. Borysovs’ka, O. (2014). Defining the parameters of the atmospheric air for iron ore mine s. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 333-339. https://doi.org/10.1201/b17547-57 [Google Scholar]
  48. Gorova, A., Pavlychenko, A., & Borysovs’Ka, O. (2013). The study of ecological state of waste disposal areas of energy and mining companies. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 169-172. https://doi.org/10.1201/b16354-29 [Google Scholar]
  49. Myronova, I. (2015). The level of atmospheric pollution around the iron-ore mine. New Developments in Mining Engineering, 193-197. https://doi.org/10.1201/b19901-35 [Google Scholar]
  50. Buzylo, V., Pavlychenko, A., Savelieva, T., & Borysovska, O. (2018). Ecological aspects of managing the stressed-deformed state of the mountain massif during the development of multiple coal layers. E3S Web of Conferences, (60), 00013. https://doi.org/10.1051/e3sconf/20186000013 [CrossRef] [EDP Sciences] [Google Scholar]
  51. Myronova, I. (2016). Prediction of contamination level of the atmosphere at influence zone of iron-ore mine. Mining of Mineral Deposits, 10(2),64-71. [CrossRef] [Google Scholar]
  52. Khomenko, O., Kononenko, M., & Petlovanyi, M. (2015). Analytical modeling of the backfill massif deformations around the chamber with mining depth increase. New Developments in Mining Engineering 2015, 265-269. https://doi:10.1201/b19901-47 [Google Scholar]
  53. Dryzhenko, A., Moldabayev, S., Shustov, A., Adamchuk, A., & Sarybayev, N. (2017). Open pit mining technology of steeply dipping mineral occurences by steeply inclined sublayers. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17(13),599-606. https://doi.org/10.5593/sgem2017/13/s03.076 [Google Scholar]
  54. Galiev, S.Z., Galiev, D.A., Seitaev, E.N., & Uteshov, E.T. (2019). Unified methodology for management of a geotechnological complex in open pit mining. Gornyi Zhurnal, (12), 70-75. https://doi.org/10.17580/gzh.2019.12.15 [CrossRef] [Google Scholar]
  55. Sobko B., Lozhnikov O., Levytskyi V., & Skyba G. (2019). Conceptual development of the transition from drill and blast excavation to non-blasting methods for the preparation of mined rock in surface mining. Rudarsko Geolosko Naftni Zbornik, 34(3),21-28. [CrossRef] [Google Scholar]
  56. Galiyev, S.Zh., Dovzhenok, A.D., Kol’ga, A.S., Galiyev, D.A., & Uteshov, E.T. (2019). Digitalization and the potential for improving the design and planning of mining operations in open cast mining. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 1(439). 146-154. [Google Scholar]
  57. Belov, O., Shustov, O., Adamchuk, A., & Hladun, O., 2018. Complex processing of brown coal in Ukraine: experience, practice, prospects. Solid State Phenomena, (277), 251-268. https://doi.org/10.4028/www.scientific.net/ssp.277.251 [CrossRef] [Google Scholar]
  58. Levytskyi, V., Sobolevskyi, R., & Korobiichuk, V. (2018). The optimization of technological mining parameters in a quarry for dimension stone blocks quality improvement based on photogrammetric techniques of measurement. Rudarsko Geolosko Naftni Zbornik, 33(2),83-89. https://doi.org/10.17794/rgn.2018.2.8 [CrossRef] [Google Scholar]
  59. Aben, E., Markenbayev, Zh., Khairullaev, N., Myrzakhmetov, S., & Aben, Kh. (2019). Study of change in the leaching solution activity after treatment with a cavitator. Mining of Mineral Deposits, 13(4),114-120. https://doi.org/10.33271/mining13.04.114 [Google Scholar]
  60. Malanchuk, Z., Moshynskyi, V., Stets, S., Ignatiuk, I., & Galiyev, D. (2020). Modelling hydraulic mixture movement along the extraction chamber bottom in case of hydraulic washout of the puff- stone. E3S Web of Conference. Preprint. [Google Scholar]
  61. Lyashenko, V.I. (2001). Improvement of mining of mineral resources with combined leaching methods. Gornyi Zhurnal, (1), 28-35. [Google Scholar]
  62. Khomenko, O. Y., & Kononenko, M. M. (2019). Geo-energetics of Ukrainian crystalline shield. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (3).https://doi.org/10.29202/nvngu/2019-3/3 [Google Scholar]
  63. Pivnyak, G. (2020). Conditions of Suitability of Coal Seams for Underground Coal Gasification. Key Engineering Materials, (844), 38-48. doi:https:10.4028/www.scientific.net/kem.844.38 [Google Scholar]
  64. Khomenko, O., Kononenko, M., Kovalenko, I., & Astafiev, D. (2018). Self-regulating roof- bolting with the rock pressure energy use. E3S Web of Conferences, (60), 00009. https://doi:10.1051/e3sconf/20186000009 [Google Scholar]
  65. Zhanchiv, B. (2013). Substantiation of mining parameters of Mongolia uranium deposits. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 10-18. [Google Scholar]
  66. Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Annual Scientific-Technical Colletion - Mining of Mineral Deposit, 231-235. https://doi.org/10.1201/b16354-43 [Google Scholar]
  67. Lyashenko, V.I. (2014). Ecological safety of uranium production in Ukraine Gornyi Zhurnal, (4), 113-116. [Google Scholar]
  68. Lyashenko, V.I. (2003). Development of scientific foundations of nature- and resource-saving technologies for underground exploitation of uranium deposits. Metallurgicheskaya i Gornorudnaya Promyshlennost, (1), 133-139. [Google Scholar]
  69. Khomenko, O., Tsendjav, L., Kononenko, M., & Janchiv, B. (2017). Nuclear-and-fuel power industry of Ukraine: production, science, education. Mining of Mineral Deposits, 11(4),86-95. https://doi.org/10.15407/mining11.04.086 [CrossRef] [Google Scholar]
  70. Lyashenko, V. (2018). Safety Improving of Mine Preparation Works at the Ore Mines. Bezopasnost’ Truda v Promyshlennosti, (5), 53-59. https://doi:10.24000/0409-2961-2018-5-53-59 [Google Scholar]
  71. Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering, 27-32. https://doi.org/10.1201/b19901-6 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.