Open Access
Issue
E3S Web Conf.
Volume 202, 2020
The 5th International Conference on Energy, Environmental and Information System (ICENIS 2020)
Article Number 08007
Number of page(s) 7
Section Renewable Energy Development
DOI https://doi.org/10.1051/e3sconf/202020208007
Published online 10 November 2020
  1. M. Faisal, A. Gani, F. Mulana, and H. Daimon, Treatment and utilization of industrial tofu waste in Indonesia, Asian J. Chem., vol. 28, no. 3, pp. 501-507 (2016) [CrossRef] [Google Scholar]
  2. H. Effendi, R. Seroja, and S. Hariyadi, Response surface method application in tofu production liquid waste treatment, Indones. J. Chem., vol. 19, no. 2, pp. 298-304 (2019) [Google Scholar]
  3. B. Dianursanti, T. Rizkytata, M. T. Gumelar, and T. H. Abdullah, Industrial tofu wastewater as a cultivation medium of microalgae Chlorella vulgaris, Energy Procedia, vol. 47, pp. 56–61 (2014) [Google Scholar]
  4. G. S. Jadhav and M. M. Ghangrekar, Improving performance of MFC by design alteration and adding cathodic electrolytes, Appl. Biochem. Biotechnol., vol. 151, no. 2–3, pp. 319–332 (2008) [CrossRef] [Google Scholar]
  5. S. B. Velasquez-Orta, T. P. Curtis, and B. E. Logan, Energy from algae using microbial fuel cells, Biotechnol. Bioeng., vol. 103, no. 6, pp. 1068–1076 (2009) [CrossRef] [Google Scholar]
  6. W. Logroño et al., Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater, Chemosphere, vol. 176, pp. 378–388 (2017) [PubMed] [Google Scholar]
  7. S. A. Motto, M. Christwardana, and Hadiyanto, Potency of yeast - Microalgae spirulina collaboration in microalgae-microbial fuel cells for cafeteria wastewater treatment, IOP Conf. Ser. Earth Environ. Sci., vol. 209, no. 1, pp. 0–8 (2018) [Google Scholar]
  8. H. M. Jiang, Combination of Microbial Fuel Cells with Microalgae Cultivation for Bioelectricity Generation and Domestic Wastewater Treatment, Environ. Eng. Sci., vol. 34, no. 7, pp. 489–495 (2017) [Google Scholar]
  9. D. F. Juang, C. H. Lee, and S. C. Hsueh, Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode, Bioresour. Technol., vol. 123, pp. 23–29 (2012) [Google Scholar]
  10. H. J. Jeon et al., Production of algal biomass (Chlorella vulgaris) using sediment microbial fuel cells, Bioresour. Technol., vol. 109, pp. 308–311 (2012) [Google Scholar]
  11. H. Liu, S. Cheng, and B. E. Logan, Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration, Environ. Sci. Technol., vol. 39, no. 14, pp. 5488–5493 (2005) [CrossRef] [Google Scholar]
  12. J. Masojídek, G. Torzillo, and M. Koblízek, Photosynthesis in Microalgae, Handb. Microalgal Cult. Appl. Phycol. Biotechnol. Second Ed., no. April, pp. 21–36 (2013) [CrossRef] [Google Scholar]
  13. G. Markou, D. Vandamme, and K. Muylaert, Microalgal and cyanobacterial cultivation: The supply of nutrients, Water Res., vol. 65, pp. 186–202 (2014) [CrossRef] [PubMed] [Google Scholar]
  14. M. Adamczyk, J. Lasek, and A. Skawińska, CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana, Appl. Biochem. Biotechnol., vol. 179, no. 7, pp. 1248–1261 (2016) [CrossRef] [Google Scholar]
  15. M. S. Shurair, F. Almomani, S. Judd, R. R. Bhosale, and A. Kumar, Potential for green algae spirulina to capture carbon dioxide from gas stream, Adv. Mater. - TechConnect Briefs, vol. 2, no. May, pp. 141–143 (2016). [Google Scholar]
  16. D. J. Lee, J. S. Chang, and J. Y. Lai, Microalgae-microbial fuel cell: A mini review, Bioresour. Technol., vol. 198, pp. 891–895 (2015) [Google Scholar]
  17. R. A. Soni, K. Sudhakar, and R. S. Rana, Spirulina – From growth to nutritional product: A review, Trends Food Sci. Technol., vol. 69, no. September, pp. 157–171 (2017) [Google Scholar]
  18. H. Wang, L. Lu, D. Liu, F. Cui, and P. Wang, Characteristic changes in algal organic matter derived from Microcystis aeruginosa in microbial fuel cells, Bioresour. Technol., vol. 195, pp. 25–30 (2015) [Google Scholar]
  19. M. R. Khan, R. Bhattacharjee, and M. S. A. Amin, Performance of the Salt Bridge Based Microbial Fuel Cell, Int. J. Eng. Technol., vol. 1, no. 2, p. 115 (2012) [Google Scholar]
  20. R. Muñoz and B. Guieysse, Algal-bacterial processes for the treatment of hazardous contaminants: A review, Water Res., vol. 40, no. 15, pp. 2799–2815 (2006) [CrossRef] [PubMed] [Google Scholar]
  21. I. Gajda, J. Greenman, C. Melhuish, and I. Ieropoulos, Photosynthetic cathodes for microbial fuel cells, Int. J. Hydrogen Energy, vol. 38, no. 26, pp. 11559–11564 (2013) [Google Scholar]
  22. M. Christwardana, H. Hadiyanto, S. Anggraeni, and S. Sudarno, Biomass and Bioenergy Performance evaluation of yeast-assisted microalgal microbial fuel cells on bioremediation of cafeteria wastewater for electricity generation and microalgae biomass production, Biomass and Bioenergy, vol. 139, no. May, p. 105617 (2020) [CrossRef] [Google Scholar]
  23. H. Hadiyanto, M. Christwardana, and C. da Costa, Electrogenic and biomass production capabilities of a Microalgae–Microbial fuel cell (MMFC) system using tapioca wastewater and Spirulina platensis for COD reduction, Energy Sources, Part A Recover. Util. Environ. Eff., vol. 00, no. 00, pp. 1–12 (2019) [Google Scholar]
  24. D. F. Juang, P. C. Yang, H. Y. Chou, and L. J. Chiu, Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells, Biotechnol. Lett., vol. 33, no. 11, pp. 2147–2160 (2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.