Open Access
E3S Web Conf.
Volume 202, 2020
The 5th International Conference on Energy, Environmental and Information System (ICENIS 2020)
Article Number 10001
Number of page(s) 6
Section Energy Conservation and Technology
Published online 10 November 2020
  1. V. Şeker, Ü. Çolak, HTR-10 full core first criticality analysis with MCNP, Nucl. Eng. Des. 222 263-270 (2003) [Google Scholar]
  2. S.A. Hosseini, M. Athari Allaf, Benchmarking of the HTR-10 reactor’s kinetic parameters: Effective delayed neutron fraction, Prog. Nucl. Energy. 75, 80-91 (2014) [CrossRef] [Google Scholar]
  3. G. Strydom, H.D. Gougar, Preliminary reactor physics assessment of the HTR module with 14% enriched UCO fuel, Nucl. Eng. Des. 256, 304-321 (1970) [Google Scholar]
  4. A. Marmier, M.A. Fütterer, K. Tuček, H. De Haas, J.C. Kuijper, J.L. Kloosterman, Revisiting the concept of HTR wallpaper fuel, Nucl. Eng. Des. 240 2485-2492 (2010) [Google Scholar]
  5. E. Bomboni, N. Cerullo, G. Lomonaco, Simplified models for pebble-bed HTR core burn-up calculations with Monteburns2.0©, Ann. Nucl. Energy. 40, 72-83 (2012) [CrossRef] [Google Scholar]
  6. S.H. Kim, C.H. Pyeon, A. Ohizumi, M. Fukushima, K. Tsujomoto, H. Unesaki, A feasibility study on fast reactor with low-enriched uranium fuel at Kyoto University Critical Assembly, Prog. Nucl. Energy. 100, 60-70 (2017) [CrossRef] [Google Scholar]
  7. A.O. Pavliuk, S.G. Kotlyarevskiy, E. V. Bespala, E. V. Zakharova, V.M. Ermolaev, A.G. Volkova, Experience of on-site disposal of production uranium-graphite nuclear reactor, J. Environ. Radioact. 184-185 ,22-31 (2018) [CrossRef] [PubMed] [Google Scholar]
  8. A. Asuncion-Astronomo, Ž. Štancar, T. Goričanec, L. Snoj, Computational design and characterization of a subcritical reactor assembly with TRIGA fuel, Nucl. Eng. Technol. (2018) [Google Scholar]
  9. R. Plukiene, D. Ridikas, Modelling of HTRs with Monte Carlo: From a homogeneous to an exact heterogeneous core with microparticles, Ann. Nucl. Energy. 30, 1573–1585. (2003) [CrossRef] [Google Scholar]
  10. E. Bomboni, N. Cerullo, E. Fridman, G. Lomonaco, E. Shwageraus, Comparison among MCNP-based depletion codes applied to burnup calculations of pebble-bed HTR lattices, Nucl. Eng. Des. 240 ,918-924. doi: 10.1016/j.nucengdes.2009.12.006., (2010) [Google Scholar]
  11. M.J. Wang, J.J. Peir, R.J. Sheu, J.H. Liang, Effects of geometry homogenization on the HTR-10 criticality calculations, Nucl. Eng. Des. 271, 356-360 (2014) [Google Scholar]
  12. S. Knol, S. de Groot, R. V. Salama, J. Best, K. Bakker, I. Bobeldijk, J.R. Westlake, M.A. Fütterer, M. Laurie, C. Tang, R. Liu, B. Liu, H. Zhao, HTR-PM fuel pebble irradiation qualification in the high flux reactor in Petten, Nucl. Eng. Des. 329, 82-88 (2018) [Google Scholar]
  13. M.J. Wang, R.J. Sheu, J.J. Peir, J.H. Liang, Criticality calculations of the HTR-10 pebble-bed reactor with SCALE6/CSAS6 and MCNP5, Ann. Nucl. Energy. 64, 1-7. (2014) [CrossRef] [Google Scholar]
  14. H.C. Kim, S.H. Kim, J.K. Kim, A new strategy to simulate a random geometry in a pebble-bed core with the Monte Carlo code MCNP, Ann. Nucl. Energy. 38 ,1877-1883. (2011) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.