Open Access
E3S Web Conf.
Volume 202, 2020
The 5th International Conference on Energy, Environmental and Information System (ICENIS 2020)
Article Number 13007
Number of page(s) 9
Section Industrial and Health Information System
Published online 10 November 2020
  1. C. Wang., P.W. Horby., F.G. Hayden., G.F. GaoA. Novel coronavirus outbreak of global health concern. Lancet. vol. 395. Issue 10223. Pp. 470-473. [Google Scholar]
  2. Q. Chen, M. Liang, Y. Li, J. Guo, D. Fei, L. Wang, L. He, C. Sheng, Y. Cai, X. Li, J. Wang, Z. Zhang. Mental health care for medical staff in China during the COVID-19 outbreak. Lancet Psychiatr. vol. 7. Issue. 4. Pp. PE15-E16. doi.10.1016/S2215-0366(20)30078-x. [Google Scholar]
  3. Yudong Shiab, Juan Wang, Yating Yanga, Zhiqiang Wang, Guoqing Wang, Kenji Hashimoto, Kai Zhang, Huanzhong Liuab. 2020. Knowledge and attitudes of medical staff in Chinese psychiatric hospitals regarding COVID-19. Brain, Behavior & Immunity-Health. Vol 4. [Google Scholar]
  4. Kementerian Kesehatan Republik Indonesia. 2020. Pedoman Pencegahan dan Pengendalian Corona Virus Diaseases (COVID -19). [Google Scholar]
  5. Ramadhan Tosepua, Joko Gunawan, Devi Savitri Effendy, La Ode Ali Imran Ahmad, Hariati Lestari, Hartati Bahar, Pitrah Asfiang. Correlation between weather and COVID-19 pandemic in Jakarta, Indonesia. Science of The Total Environment. Available online 4 April 2020, 138436. In Press, Journal Pre-proof. [Google Scholar]
  6. Zheng F., Zhong S. 2011. Time series forecasting using a hybrid RBF neural network and AR model based on binomial smoothing. World Academy of Science. Eng Technol 75. Pp. 1471- 1475. [Google Scholar]
  7. Pasaribu, Y. P., Fitrianti, H., Suryani, D. R. (2018). Rainfall forecast of merauke using autoregressive integrated moving average model. In The 3rd International Conference on Energy. Environmental and Information System, 73. Central Java, Indonesia. [Google Scholar]
  8. P. Arumugam., R. Saranya. (2018). Outlier Detection and Missing Value in Seasonal ARIMA Model Using Rainfall Data*. Materialstoday:proceedings. vol. 5. Issue 1. Part 1. Pp. 1791-1799. [Google Scholar]
  9. Arya P., Paul R.K., Kumar A., Singh K.N., Sivaramne N, Chaudhary P. (2016). Predicting pest population using weather variables: An ARIMAX time series framework. International Journal of Agricultural and Statistical Sciences. vol. 11. No. 2. Pp. 381-386. [Google Scholar]
  10. Xiang C., Zhou Z. (2010). Application of ARIMA and SVM hybrid model in pest forecast. Acta Entomologica Sinica. vol. 53 No. 9. Pp. 1055-1060. [Google Scholar]
  11. Al-Sakkaf A., Jones G. (2014). Comparison of time series models for predicting campylobacteriosis risk in New Zealand. Zoonoses Public Health, 61 (3). Pp. 167-174. [CrossRef] [PubMed] [Google Scholar]
  12. Zhirui Heab., Hongbing Taoa. (2018). Epidemiology and ARIMA model of positive-rate of influenza viruses among children in Wuhan, China: A nine-year retrospective study. International Journal of Infectious Diseases. vol. 74. Pp. [CrossRef] [Google Scholar]
  13. Caporale, G. M., & Gil-Alana, L. A. (2010). Long Memory and Fractional Integration in High Frequency Financial Time Series. Economics and Finance Working Paper Series. Working Paper No. 10-10. Department of Economics and Finance. [Google Scholar]
  14. Oskar Vivero., William P. Heath. (2012). Regularised Estimators for ARFIMA Processes. IFAC Proceedings Volumes. Vol 45. Issue 16. Pp. 298-303. [CrossRef] [Google Scholar]
  15. Baillie, R. T. & Morana, C. (2012). Adaptive ARFIMA Models With Apllications to Inflation. Economic Modelling. vol. 29. No.6. Pp. 2451-2459. [Google Scholar]
  16. Aye G.C., Balcilar M., Gupta R., Kilimani N., Nakumuryango A. & Redford S. (2014). Predicting BRICS stock returns using ARFIMA models. Applied Financial Economics. Pp. 1159-1166. doi: 10.1080/09603107.2014.924297. [Google Scholar]
  17. Kartikasari, P. 2015. Studi Simulasi Pengaruh Outlier Terhadap Pengujian Linieritas Dan Long Memory Beserta Aplikasinya Pada Data Return Saham. Masters thesis, Institut Teknologi Sepuluh Nopember. [Google Scholar]
  18. Krzysztof Burnecki., Grzegorz Sikora. (2017). Identification and validation of stable ARFIMA processes with application to UMTS data. Chaos, Solitons & Fractals. vol. 102. Pp. 456-466. [CrossRef] [Google Scholar]
  19. José M., Belbuteab., Alfredo M. Pereirac. (2015). An alternative reference scenario for global CO2 emissions from fuel consumption: An ARFIMA approach. Economics Letters. vol. 136. Pp. 108-111. [Google Scholar]
  20. Kartikasari, P. (2020). Prediksi Harga Saham PT. Bank Negara Indonesia Dengan Menggunakan Model Autoregressive Fractional Integrated Moving Average (ARFIMA). Jurnal Statistika Universitas Muhammadiyah Semarang. vol. 8. No. 1. Pp. 1-7. [CrossRef] [Google Scholar]
  21. Doornik, J. A., and Ooms, M. (1999). A Package for estimating, forecasting and Simulating ARFIMA Models: Arfima Package 1.0 for Ox. Nuffield College, Rotterdam. [Google Scholar]
  22. Geweke, J., & Hudak, S. P. (1983). The Estimation and Application of Long Memory Time Series Models. Journal of Time series Analysis 4, 221-237. [Google Scholar]
  23. Wei, W. W. S. (2006). Time Series Analysis Second Edition: Univariate and Multivariate Methods (2nd eds). New York, United States of America: Pearson Education. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.