Open Access
Issue
E3S Web Conf.
Volume 203, 2020
Ecological and Biological Well-Being of Flora and Fauna (EBWFF-2020)
Article Number 03009
Number of page(s) 7
Section Protection and Use of Natural Resources
DOI https://doi.org/10.1051/e3sconf/202020303009
Published online 05 November 2020
  1. V.I. Il’in, A.F. Gubin, Astrahanskij vestnik ekologicheskogo obrazovaniya, Minimization of negative effect of electroplating industry on an environment, 3, 55-60 (2014). (rus) [Google Scholar]
  2. Studies in Environmental Science Chapter 13 Waste Water from Chemical and Electrochemical Metal-Treatment Processes, 187–215 (1979). DOI: 10.1016/s0166-1116(08)71604-2 [Google Scholar]
  3. K. Upadhyay, Jr. of Industrial Pollution Control, Solution for wastewater problem related to electroplating industry: an overview, 22, 59-66 (2006). [Google Scholar]
  4. A.Yu. Batalova, O.V.Nazarenko, Energetika: effektivnost’, nadezhnost’, bezopasnost’: materialy XX Vserossijskoj nauchno-tekhnicheskoj konferencii Ochistka stochnyh vod gal’vanicheskogo proizvodstva ot tyazhelyh metallov na primere OAO «MANOTOM’», 2, 136-138 (2014). (rus) [Google Scholar]
  5. Membrane Filtration of Metal Plating Wastewater https://www.vsep.com/pdf/MetalPlating.pdf [Google Scholar]
  6. K. Do, J. Walder SF Journal of Environmental ad Earth Science An Evaluation of technologies for Reduction of Wastewater from Plating Industry in Vietnam, 1 1-8 (2018). [Google Scholar]
  7. N. Adhoum, L. Monser, N. Bellakhal, J.-E. Belgaied, Journal of Hazardous Materials Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation., 112, 207-213 (2004). DOI: 10.1016/j.jhazmat.2004.04.018 [Google Scholar]
  8. M. Al-Shannag, Z. Al-Qodah, K. Bani-Melhem, M. Rasool Qtaishat, M. Alkasrawi Chem. Eng. J., Heavy metal ions removal from metal plating wastewater using electrocoagulation: Kinetic study and process performance, 260, 749-756 (2015). DOI: 10.1016/j.cej.2014.09.035 [Google Scholar]
  9. G. Chen Sep. Purif. Technol. Electrochemical technologies in wastewater treatment, 38 11-41 (2004). DOI: 10.1016/j.seppur.2003.10.006 [Google Scholar]
  10. F. Akbal. S.Camc, Desalination. Copper, chromium and nickel removal from metal plating wastewater by electrocoagulation, 269, 214-222 (2011). DOI: 10.1007/s12205-014-0642-8 [Google Scholar]
  11. A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour ChemBioEng Rev, Removal of Heavy Metals from Industrial Wastewaters: A Review, 4, 1-24 (2017). DOI: 10.1002/cben.201600010 [Google Scholar]
  12. T.A. Kurniawan, G.Y.S. Chan, W.-H. Lo, S.Babel, Chem. Eng. J. Physico–chemical treatment techniques for wastewater laden with heavy metals, 118, 83-98 (2006). DOI: 10.1016/j.cej.2006.01.015 [Google Scholar]
  13. L. Charemtanyarak Water Sci. Technol., Heavy metals removal by chemical coagulation and precipitation, 39, (1999). DOI: 10.1016/S0273-1223(99)00304-2 [Google Scholar]
  14. Q. Chen, Z. Luo, C. Hills, G. Xue, M. Tyrer, Water Research, Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide, 43, 2605-2614 (2009). DOI: 10.1016/j.watres.2009.03.007 [Google Scholar]
  15. B.A.M. Al-Rashdi, D.J. Johnson, N. Hilal, Desalination. Removal of heavy metal ions by nanofiltration, 315, 2-17 (2013). DOI: 10.1016/j.desal.2012.05.022 [Google Scholar]
  16. A.W. Mohammad, Y.H. Teow, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hilal, Desalination. Nanofiltration membranes review: Recent advances and future prospects, 356, 226-254 (2015). DOI: 10.1016/j.desal.2014.10.043 [Google Scholar]
  17. L. Y. Ng, A. W. Mohammad, C. Y. Ng, Adv. Colloid Interface Sci., A review on nanofiltration membrane fabrication and modification using polyelectrolytes: Effective ways to develop membrane selective barriers and rejection capability, 197, 85-107 (2013). DOI: 10.1016/j.cis.2013.04.004 [Google Scholar]
  18. S.S. Shenvi, A.M. Isloor, A.F. Ismail, Desalination, A review on RO membrane technology: Developments and challenges, 368, 10-26 (2015). DOI: 10.1016/j.desal.2014.12.042 [Google Scholar]
  19. S.H. Joo, B. Tansel, Journal of Environmental Management, Novel technologies for reverse osmosis concentrate treatment: A review, 150, 322-335 (2015). DOI: 10.1016/j.jenvman.2014.10.027 [Google Scholar]
  20. S.-Y. Kang, J.-U. Lee, S.-H. Moon, K.-W. Kim, Chemosphere. Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater, 56, 141-147 (2004). DOI: 10.1016/j.chemosphere.2004.02.004 [Google Scholar]
  21. F. Gode, E. Pehlivan, Journal of Hazardous Materials. Removal of chromium(III) from aqueous solutions using Lewatit S 100: The effect of pH, time, metal concentration and temperature. 136, 330-337 (2006). DOI: 10.1016/j.jhazmat.2005.12.021 [Google Scholar]
  22. A. i Hu ic i P P d ścielny E R en Chem phe e Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method 56, 91-106 (2004). DOI: 10.1016/j.chemosphere.2004.03.006 [Google Scholar]
  23. N. Martynov, et al. Pulsed electric discharge in an aqueous medium for processing raw amber. Journal of Physics: Conference Series 1614, 012060 (2020) doi:10.1088/1742-6596/1614/1/012060 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.