Open Access
E3S Web Conf.
Volume 203, 2020
Ecological and Biological Well-Being of Flora and Fauna (EBWFF-2020)
Article Number 05017
Number of page(s) 13
Section Land Fund Management and Agricultural Asset
Published online 05 November 2020
  1. ITU-T: General overview of NGN. Recommendation Y.2001 (2004) [Google Scholar]
  2. ITU-T: General principles and general reference model for Next Generation Networks. Recommendation Y.2011 (2004) [Google Scholar]
  3. ITU-T: General overview of the Global Information Infrastructure standards development. Recommendation Y.100 (1998) [Google Scholar]
  4. ITU-T Recommendation G.1000, Communications quality of service: A framework and definitions (2001) [Google Scholar]
  5. O.A. Simonina Models for calculating QoS indicators in next generation networks: Dissertation for the degree of candidate of technical sciences, 129 (2005) [Google Scholar]
  6. O.I. Shelukhin, A.V. Osin, S.M. Smolsky Self-similarity and fractals. Telecommunication applications, 368 (2008) [Google Scholar]
  7. S.A. Ageev, I. B. Saenko, I. V. Kotenko Method and Algorithms of Anomaly Detection in Multiservice Network Traffic based on Fuzzy Logical Inference. Informatsionno - upravliaiushchiesystemy Information and Control systems,3, 61 – 68 (2008) [Google Scholar]
  8. A.N. Nazarov, K.I. Sychev Models and methods for calculating performance indicators of nodal equipment and structural and network parameters of next generation communication networks, 389 (2010) [Google Scholar]
  9. RFC 2205: Resourse ReSerVation Protocol (RSVP) – Version 1 Functional Specification [Google Scholar]
  10. RFC 3550: RTP: A Transport Protocol for real – Time Applications [Google Scholar]
  11. Recommendation ITU – T Y.1540. Internet protocol data communication service – IP packet transfer and availability performance parameters, 2011. (Recommendation ITU- T Y.1540 defines parameters that may be used in specifying and assessing the performance of speed, accuracy). [Google Scholar]
  12. Recommendation ITU – T Y.1541. Network performance objectives for IP – based services [Google Scholar]
  13. Recommendation ITU – T Y.1221. Traffic control and congestion control in IP – based networks [Google Scholar]
  14. Sefz N. QoS Standarts for IP – Based Networks. IEEE Communication Magazine, 82 – 89 (2003) [Google Scholar]
  15. ITU-T: Recommendation M.3010. Principles for a telecommunications management network (2000) [Google Scholar]
  16. ITU-T: Recommendation M.3020.TMN interface specification methodology (2000) [Google Scholar]
  17. ITU-T: Recommendation M.3400. TMN management functions. (2000) [Google Scholar]
  18. A.N. Melikhov, L.S. Bernstein, S.N. Korovin Situational-advising systems with fuzzy logic, 272 (1990 [Google Scholar]
  19. Pospelov D.A. Situational management: theory and practice. / D.A. Pospelov - M: Nauka, 1986. – 288 p.: ill. [Google Scholar]
  20. V.V. Borisov, M.M. Zernov Implementation of a situational approach based on a fuzzy hierarchical situational-event network, Artificial intelligence and decision making,1, 17-30 (2009) [Google Scholar]
  21. V.V. Borisov, V. V. Kruglov, A. S. Fedulov Fuzzy models and networks, 284 (2012) [Google Scholar]
  22. S.A. Ageev, A. A. Gladkikh, D. V. Mishin, A. A. Privalov, Method of monitoring of technical condition of multiservice communication network on the basis of hierarchical fuzzy inference, Fuzzy Technologies in the Indasry, 211 – 221 (2018) [Google Scholar]
  23. E. Mamdani and H. Efstathion. Higher-order logics for handling uncertainty in expert systems,.3, 243-259 (1985) [Google Scholar]
  24. E. Mamdani and S. Assilian. “An Experiment in Linguiste Syntheses with Fuzzy Logic Controller” Int. Man-Machine Studies, 7, 1, 1-13, (1975) [Google Scholar]
  25. A. Pegat Fuzzy modeling and control: trans. from English. M.: BINOM Laboratory of Knowledge, 798, (2013) [Google Scholar]
  26. V.S. Pugachev, Generalization of the theory of conditionally optimal estimation and extrapolation, Reports of Academy of Sciences of the USSR. , 262, 3, 535 – 538 (1982) [Google Scholar]
  27. V.S. Pugachev Conditionally optimal filtration and extrapolation of continuous processes, Automation and telemechanics, 2, 82-89 (1984) [Google Scholar]
  28. B.T. Polyak, Ya.Z. Tsypkin. Pseudo-gradient adaptation and learning algorithms Automation and telemechanics, 3. 45-63 (1972) [Google Scholar]
  29. B.T. Polyak, Ya.Z. Tsypkin Optimal pseudo-gradient adaptation algorithms. Automation and telemechanics, 8. Pp. 74-84 (1980) [Google Scholar]
  30. Granichin O.N. Randomized optimization and estimation algorithms for almost arbitrary noise, 291 (2003) [Google Scholar]
  31. T. Takagi, M. Sugeno, Fuzzy Identification of Systems and Its Applications to Modeling and Control. In: IEEE Trans. on System, Man and Cybernetics, 15,1, 11-132. (1985) [Google Scholar]
  32. B.S. Goldstein Communication networks: Textbook for universities, 400 (2011) [Google Scholar]
  33. L. Kleinrock, Queueing Systems, 1 (1975). [Google Scholar]
  34. L. Kleinrock, Queueing Systems, Volume II: Computer Application. (1976). [Google Scholar]
  35. S. Ageev, V. Karetnikov, Adaptive method of detecting traffic anomalies in high-speed multi-service communication networks, E3S Web of Conferences, 157, 04027 (2020). doi:10.1051/e3sconf/202015704027 [CrossRef] [EDP Sciences] [Google Scholar]
  36. V. Karetnikov, G. Chistyakov, Tasks of developing the aquatory for testing autonomus ships in inland waterways, E3S Web of Conferences, 157, 02010. (2020). doi:10.1051/e3sconf/202015702010 [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.