Open Access
E3S Web Conf.
Volume 207, 2020
25th Scientific Conference on Power Engineering and Power Machines (PEPM’2020)
Article Number 01001
Number of page(s) 8
Section Thermal Equipment, Heat and Mass Transfer Processes
Published online 18 November 2020
  1. R. A. Ackermann, Cryogenic regenerative heat exchangers. Springer Science & Business, (2013). [Google Scholar]
  2. K. Thulukkanam, Heat exchanger design handbook. CRC press, (2013). [CrossRef] [Google Scholar]
  3. R. K. Shah, D. P. Sekulic, Fundamentals of heat exchanger design. John Wiley & Sons, (2003). [Google Scholar]
  4. H. J. Bart, S. Scholl, Innovative heat exchangers. Springer, (2017). [Google Scholar]
  5. J. G. Cevallos, Thermal and manufacturing design of polymer composite heat exchangers. PhD diss., (2014). [Google Scholar]
  6. J. D. Anderson, Computational fluid dynamics. The basic with application. New York, McGraw-Hill, Inc., (1995). [Google Scholar]
  7. Ansys Inc., Ansys Fluent theory guide, (2013). [Google Scholar]
  8. ANSYS Inc. ANSYS FLUENT l2.0, User’s guide. PathScale, April, (2009). [Google Scholar]
  9. A. Penev, L. Tsokov, N. Penkova, Numerical research of the heat exchange in fixed regenerator for dry air. Technical University of Sofia. Sozopol, September 19, (2019). [Google Scholar]
  10. A. Penev, L. Tsokov, Analytical and numerical solutions for effectiveness of fixed regenerator for heat recovery with dry air. Varna, September 5, (2019). [Google Scholar]
  11. A. Penev, L. Tsokov, N. Penkova, A conjugate heat transfer in a fixed-bed ceramic regenerator for air conditioning applications. Journal of Chemical Technology and Metallurgy, (2020). [Google Scholar]
  12. D. Sun, J. Xu, Q. Chen, Modeling of the evaporation and condensation phase-change problems with Fluent. Numerical Heat Transfer, Part B: Fundamentals, 66(4):326-342, (2014). [CrossRef] [Google Scholar]
  13. N. Nachev, Thermophysical properties of humid air. S.ITUS, (2012). [Google Scholar]
  14. N. Nachev, V. Sharankov, Thermophysical properties of water and steam. S.ITUS, (2011). [Google Scholar]
  15. T. Petrova, The International Association for the Properties of Water and Steam. Revised Release on Surface Tension of Ordinary Water Substance. Moscow, Russia, June, (2014). [Google Scholar]
  16. P. T. Tsilingiris, Thermophysical and transport properties of humid air at temperature range between 0 and 100 C. Energy Conversion and Management, (2008). [Google Scholar]
  17. W. C. Reynolds, Thermodynamic properties in SI-graphs, tables and computational equations for 40 substances. University, Departement of mechanical engineering, (1979). [Google Scholar]
  18. C. T. Joen, Y. Park, Q. Wang, A. Sommers, X. Han, A. Jacobi, A review on polymer heat exchangers for HVAC&R applications. International journal of refrigeration, (2009). [Google Scholar]
  19. D. Johnson, Ceramic technology for advanced heat engines. Department of energy, USA, September, (1990). [Google Scholar]
  20. X. Chen, Y. Su, D. Reay, Recent research developments in polymer heat exchangers–A review. Renewable and Sustainable Energy Reviews 60:l367-l386, (2016). [CrossRef] [Google Scholar]
  21. M. Pomianowski, P. Heiselberg, Regenerator heat exchanger–calculation of heat recovery efficiency and pressure loss. Different configuration sensitivity analysis. (2017). [Google Scholar]
  22. A. Shchegolkov, A. Shchegolkov, T. Dyachkova, Nanomodified polymer materials for regenerative heat exchangers. AIP Conference Proceedings. Vol. 1899. No. 1. AIP Publishing LLC, (2017). [Google Scholar]
  23. D. M. Zarkadas, K. K. Sirkar, Polymeric hollow fiber heat exchangers: An alternative for lower temperature applications. Industrial & engineering chemistry research 43(25):8093-8106, (2004). [Google Scholar]
  24. M. Nizovtsev, V. Borodulin, V. Letushko, Infuence of condensation on the effciency of regenerative heat exchanger for ventilation. Applied Thermal Engineering, (2017). [Google Scholar]
  25. Y. A. Aristov, I. V. Mezentsev, V. A. Mukhin, A new approach to heat and moisture regeneration in the ventilation system of rooms. ii. prototype of the real device. Journal of engineering physics and thermophysics, 79(3):577-584, (2006). [CrossRef] [Google Scholar]
  26. H. Brouwers, C. Van Der Geld, Heat transfer, condensation and fog formation in crossfow plastic heat exchangers. International journal of heat and mass transfer, 39(2):39l-405, (1996). [Google Scholar]
  27. A. Ahsan, Evaporation, condensation and heat transfer. Sep l2, (2011). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.