Open Access
Issue
E3S Web Conf.
Volume 209, 2020
ENERGY-21 – Sustainable Development & Smart Management
Article Number 02009
Number of page(s) 5
Section Session 1. Towards Intelligent Energy Systems
DOI https://doi.org/10.1051/e3sconf/202020902009
Published online 23 November 2020
  1. A.Z. Gamm, I.N. Kolosok Detection of large errors in telemetry in electric power systems. – Novosibirsk: Nauka, 2000. – 152 pp. [Google Scholar]
  2. A.Z. Gamm Statistical methods for the state estimation of electric power systems. – Nauka, 1976. [Google Scholar]
  3. R.E. Kalman A new approach to linear filtering and prediction problems //Journal of basic Engineering. - 1960. - 82. - №. 1. - pp. 35-45. [CrossRef] [Google Scholar]
  4. S.S. Haykin Kalman filtering and neural networks. - New York : Wiley, 2001. - pp. 221-269. [Google Scholar]
  5. A.S. Debs, R.E. Larson A dynamic estimator for tracking the state of a power system //IEEE Transactions on Power Apparatus and Systems. - 1970. - 7. - pp. 1670-1678. [CrossRef] [Google Scholar]
  6. H. Abarbanel Analysis of observed chaotic data. - Springer Science & Business Media, 2012. [Google Scholar]
  7. A.Y. Loskutov Mathematical foundations of chaotic dynamical systems: a course of lectures //M.: MSU. - 2008. [Google Scholar]
  8. F. Takens On the numerical determination of the dimension of an attractor //Dynamical systems and bifurcations. - Springer, Berlin, Heidelberg, 1985. - pp. 99-106. [CrossRef] [Google Scholar]
  9. L. Noakes The Takens embedding theorem //International Journal of Bifurcation and Chaos. - 1991. - 1 - 04. - pp. 867-872. [CrossRef] [Google Scholar]
  10. M.T. Rosenstein, J.J. Collins, C.J. De Luca A practical method for calculating largest Lyapunov exponents from small data sets //Physica D: Nonlinear Phenomena. - 1993. - 65 - 1-2. - pp. 117- 134. [CrossRef] [MathSciNet] [Google Scholar]
  11. TISEAN Nonlinear Time Series Analysis,: https://www.pks.mpg.de/~tisean/ (Electronic resource) [Google Scholar]
  12. Y.B. Pesin Lyapunov characteristic exponents and smooth ergodic theory // Uspekhi matematicheskikh nauk. - 1977. - 32. - №. 4 (196). - pp. 55-112. [Google Scholar]
  13. Abarbanel H. Analysis of observed chaotic data. - Springer Science & Business Media, 2012. [Google Scholar]
  14. Glazunova A. Dynamic state estimation //Monitoring, Control and Protection of Interconnected Power Systems. - Springer, Berlin, Heidelberg, 2014. - pp. 107-123. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.