Open Access
E3S Web Conf.
Volume 210, 2020
Innovative Technologies in Science and Education (ITSE-2020)
Article Number 02002
Number of page(s) 7
Section Digital Technology in Environmental Protection
Published online 04 December 2020
  1. S. Moriceau, Cellular automata on a G-set. arXiv: 1105.5335 (2011) [math.DS] [Google Scholar]
  2. M. Margenstern, Small Universal Cellular Automata in Hyperbolic Spaces: A Collection of Jewels (2013) [Google Scholar]
  3. M. Sobottka, D. Gonçalves, A note on the definition of siding block codes and the Curtis-Hedlund-Lyndon Theorem. arXiv: 1507.02180 [math.DS] (2015) [Google Scholar]
  4. S. Wacker, Cellular Automata on Group Sets and the Uniform Curtis-Hedlund-Lyndon Theorem. In Cellular Automata and Discrete Complex Systems. AUTOMATA (2016) DOI: 10.1007/978-3-319-39300-1_15. [Google Scholar]
  5. T. Ceccherini-Silberstein, M. Coornaert, Cellular Automata and Groups (2010) DOI: 10.1007/978-3-642-14034-1. ISBN: 978-3-642-14033-4, 978-3-642-14034-1 [Google Scholar]
  6. S. Wolfram, I am an information pack rat. New Scientist (2014) [Google Scholar]
  7. M. Peragine, The Universal Mind: The Evolution of Machine Intelligence and Human Psychology, Xiphias Press (2016) [Google Scholar]
  8. C. A. Pickover, C. A. Pickover, The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics. Sterling Publishing Company, Inc, (2009) ISBN 978-1402757969. [Google Scholar]
  9. A. G. Hoekstra, J. Kroc, P. Sloot, Simulating complex systems by cellular automata. Springer (2010) ISBN 978-3-642-12202-6 [Google Scholar]
  10. L. Manukyan, S. A. Montandon, A. Fofonjka, S. Smirnov, M. C. Milinkovitch. A living mesoscopic cellular automaton made of skin scales. Nature, 544, 173–179 (2017) doi:10.1038/nature22031. [CrossRef] [PubMed] [Google Scholar]
  11. W. Peak, M. Messinger, Evidence for complex, collective dynamics and emergent, distributed computation in plants. Proceedings of the National Institute of Science of the USA: journal, 101(4), 918—922 (2004) doi:10.1073/pnas.0307811100. — Bibcode: 2004PNAS.101.918P. — PMID 14732685. [CrossRef] [Google Scholar]
  12. A. Deutsch, S. Dormann, Biological Applications. Cellular Automaton Modeling of Biological Pattern Formation. Springer Science. Business Media (2017) ISBN 978-1-4899-7980-3 [CrossRef] [Google Scholar]
  13. K. G. F. Janssens, An introductory review of cellular automata modeling of moving grain boundaries in polycrystalline materials. Mathematics and Computers in Simulation, 80, 1361–1381 (2010) doi:10.1016/j.matcom.2009.02.011 [CrossRef] [Google Scholar]
  14. H. Gerard’t, The Cellular Automaton Interpretation of Quantum Mechanics. Springer International Publishing Springer (2016) ISBN 978-3-319-41285-6, 978-3-319-41284-9. [Google Scholar]
  15. V. E. Meshkov, E. V. Meshkova, V. S. Churakov, Finite emotional automata, Natural and technical sciences, 12(114), 299-305 (2017) [Google Scholar]
  16. Chaos and Cyber Culture Timothy Leary. Ronin Publishing. ISBN: 0914171771 (Last accessed 11.06.2020) [Google Scholar]
  17. S. Wolfram, “Computation theory of cellular automata”. Communications in Mathematical Physics, 96(1), 15–57 (1984) Bibcode:1984CMaPh.96...15W. doi:10.1007/BF01217347. S2CID 121021967 [CrossRef] [Google Scholar]
  18. V. Meshkov, N. Kochkovaya, I. Usova, Formation of functional-role communication clusters based on morphological features of the verbal context. XIII International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness – INTERAGROMASH 2020” E3S Web Conf. 175 (2020) DOI [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.