Open Access
Issue
E3S Web Conf.
Volume 210, 2020
Innovative Technologies in Science and Education (ITSE-2020)
Article Number 04001
Number of page(s) 9
Section Organic Farming and Soil Management
DOI https://doi.org/10.1051/e3sconf/202021004001
Published online 04 December 2020
  1. N. Maksimovich, E. Khairulina, Geochemical Barriers and Environmental Protection, Training Manual. Perm. Enrichment of ores, 5, 13-17 (2011) [Google Scholar]
  2. A. Izotov, O. Koverdyaev, O. Vershinina, Ways to reduce the impact of drainage water on the environment in mining areas. Mountain Journal, 10, 103-106 (2006) [Google Scholar]
  3. E. Álvarez-Ayuso, A. García-Sánchez, Removal of cadmium from aqueous solutions by palygorskite, Journal of Hazardous Materials, 147(1–2), 594-600 (2007) https://doi.org/10.1016/j.jhazmat.2007.01.055. [CrossRef] [PubMed] [Google Scholar]
  4. W. Wang, A. Wang, 9 - Vermiculite Nanomaterials: Structure, Properties, and Potential Applications, Nanomaterials from Clay Minerals, Elsevier, 415-484 (2019) https://doi.org/10.1016/B978-0-12-814533-3.00009-0. [Google Scholar]
  5. El Sayed, El Bastamy, El Sayed, Natural diatomite as an effective adsorbent for heavy metals in water and wastewater treatment (a batch study), Water Science, 32(1), 32-43 (2018) https://doi.org/10.1016/j.wsj.2018.02.001. [CrossRef] [Google Scholar]
  6. H. E. Rizk, I. M. Ahmed, S. S. Metwally, Selective sorption and separation of molybdenum ion from some fission products by impregnated perlite, Chemical Engineering and Processing - Process Intensification, 124, 131-136 (2018) https://doi.org/10.1016/j.cep.2017.12.014. [CrossRef] [Google Scholar]
  7. F. García-Villén, E. Carazo, A. Borrego-Sánchez, R. Sánchez-Espejo, P. Cerezo, C. Viseras, C. Aguzzi, Chapter 6 - Clay minerals in drug delivery systems, Modified Clay and Zeolite Nanocomposite Materials, Elsevier, 129-166 (2019) https://doi.org/10.1016/B978-0-12-814617-0.00010-4 [Google Scholar]
  8. P. Cappelletti, A. Colella, A. Langella, M. Mercurio, L. Catalanotti, V. Monetti, B. de Gennaro, Use of surface modified natural zeolite (SMNZ) in pharmaceutical preparations Part 1. Mineralogical and technological characterization of some industrial zeolite-rich rocks, Microporous and Mesoporous Materials, 250, 232-244 (2017) https://doi.org/10.1016/j.micromeso.2015.05.048 [CrossRef] [Google Scholar]
  9. C. Po-Hsiang, Li Z., J. Wei-Teh, S. Binoy, Chapter 7 - Clay minerals for pharmaceutical wastewater treatment, Micro and Nano Technologies, Modified Clay and Zeolite Nanocomposite Materials, Elsevier, 167-196 (2019) https://doi.org/10.1016/B978-0-12-814617-0.00011-6 [Google Scholar]
  10. M. May Muñoz-Boado, E. B. Caldona, Gypsum-reinforced zeolite composite for particulate matter reduction from vehicular emissions, Journal of Environmental Chemical Engineering, 5(3), 2631-2638 (2017) https://doi.org/10.1016/j.jece.2017.05.003 [CrossRef] [Google Scholar]
  11. M. Mercurio, B. Sarkar, A. Langella, In Micro and Nano Technologies, Modified Clay and Zeolite Nanocomposite Materials, Elsevier, 167-196 (2019) [Google Scholar]
  12. R. Kulasekaran, D. D. Reddy, Chapter Four - Zeolites and Their Potential Uses in Agriculture, Advances in Agronomy, Academic Press, 113, 219-241 (2011) [CrossRef] [Google Scholar]
  13. S. A. A. Nakhli, et al. “Application of Zeolites for Sustainable Agriculture: a Review on Water and Nutrient Retention.” Water, Air, & Soil Pollution, 228, 1-34 (2017) DOI:10.1007/s11270-017-3649-1Corpus ID: 102512926 [CrossRef] [Google Scholar]
  14. P. Grishin, V. Kravchenko, I. Kravchenko, Agronomic ores and unconventional minerals (interactive course): Training manual, 176 (2011) [Google Scholar]
  15. E. L. Aksakal, I. Angin, T. Oztas, Effects of diatomite on soil consistency limits and soil compactibility, CATENA, 101, 157-163 (2013) https://doi.org/10.1016/j.catena.2012.09.001. [Google Scholar]
  16. D. Faizova, M. Karpukhin, The effectiveness of diatomite as fertilizer when cultivating table carrots in the middle urals, Youth and Science, 7, 61 (2018) [Google Scholar]
  17. H. Zhang, W. Chen, B. Zhao, L. A. Phillips, Y. Zhou, D. R. Lapen, J. Liu, Sandy soils amended with bentonite induced changes in soil microbiota and fungistasis in maize fields, Applied Soil Ecology, 146 (2020) https://doi.org/10.1016/j.apsoil.2019.103378. [Google Scholar]
  18. J. Mi, E. G. Gregorich, S. Xu, N. B. McLaughlin, B. Ma, J. Liu, Effect of bentonite amendment on soil hydraulic parameters and millet crop performance in a semi-arid region, Field Crops Research, 212, 107-114 (2017) https://doi.org/10.1016/j.fcr.2017.07.009. [CrossRef] [Google Scholar]
  19. M. Rudmin, S. Banerjee, B. Makarov, A. Mazurov, A. Ruban, Y. Oskina, O. Tolkachev, A. Buyakov, M. Shaldybin, An investigation of plant growth by the addition of glauconitic fertilizer, Applied Clay Science, 180 (2019) https://doi.org/10.1016/j.clay.2019.105178. [CrossRef] [Google Scholar]
  20. E. Bobrekhov, Application of bentonite and glauconite in beet farming, Agriculture, 6, (2013) https://cyberleninka.ru/article/n/primenenie-bentonita-i-glaukonita-v-sveklovodstve (Last accessed 26.08.2020) [Google Scholar]
  21. L. Varlamova, A. Bakharev, V. Sergeyev, Assessment of the effectiveness of silicon-containing minerals in field crops, Agrochemical Gazette, 2, 21-24 (2017) [Google Scholar]
  22. C. Song, Y. Guan, D. Wang, D. Zewudie, Feng-Min Li, Palygorskite-coated fertilizers with a timely release of nutrients increase potato productivity in a rain-fed cropland, Field Crops Research, 166, 10-17 (2014) https://doi.org/10.1016/j.fcr.2014.06.015 [CrossRef] [Google Scholar]
  23. N. Yakovleva, Efficiency of resource-saving technologies of growing vegetable crops on zeolite-containing greenhouse substrates, Gavrish, 3, 6-8 (2004) [Google Scholar]
  24. L. Bikkinina, I. Yapparov, M. Ilyasov, R. Gazizov, I. Sukhanova, N. Sharonova, Prospects for the use of zeolite in crop production, Agroforum, 2, 58-59 (2019) [Google Scholar]
  25. Batukayev, I. Amisheva, The effects of zeolite substrates on the rooting, growth and development of grape plants during clonal reproduction, Herald of the Academy of Sciences of the Chechen Republic, 1(10), 15-20 (2009) [Google Scholar]
  26. G. Tsintskaladze, L. Eprikashvili, T. Urushadze, T. Kordzakhia, T. Sharashenidze, M. Zautashvili, M. Burjanadze, Nanomodified natural zeolite as a fertilizer of prolonged activity, Annals of Agrarian Science, 14(3), 163-168 (2016) https://doi.org/10.1016/j.aasci.2016.05.013 [CrossRef] [Google Scholar]
  27. Y. Wu, J. Luo, Q. Zhang, M. Aleem, F. Fang, Z. Xue, J. Cao, Potentials and challenges of phosphorus recovery as vivianite from wastewater: A review, Chemosphere, 226, 246-258 (2019) https://doi.org/10.1016/j.chemosphere.2019.03.138 [CrossRef] [PubMed] [Google Scholar]
  28. P. Wilfert, A. I. Dugulan, K. Goubitz, L. Korving, G. J. Witkamp, M. C. M. Van Loosdrecht, Vivianite as the main phosphate mineral in digested sewage sludge and its role for phosphate recovery, Water Research, 144, 312-321 (2018) https://doi.org/10.1016/j.watres.2018.07.020 [CrossRef] [PubMed] [Google Scholar]
  29. Smetannikov, A. Kosolapova, E. Mitrofanova, B. Bachurin, D. Onasov, D. Fomin, V. Yamaltdinova, D. Shishkov, E. Onosova, Results of tests of waste processing of potassium-magnesium ore as fertilizers of the pro-extended action, the Herald of the Permian head. URO RAS, 4, 58-63 (2017) [Google Scholar]
  30. S. Doroshkevich, I. Bardamova, The Impact of Mining and Refining Waste on the fertility of chestnut soil, Agrochemy, 9, 23-29 (2014) [Google Scholar]
  31. Bardamova, S. Doroshkevich, E. Golubeva, Use of waste after cleaning the mine water sulphide-tungsten deposit as unconventional micronutrient fertilizers, Agrochem, 1, 19-27 (2017) [Google Scholar]
  32. B. B. Kar, B. V. R. Murthy, V. N. Misra, Extraction of molybdenum from spent catalyst by salt-roasting. International Journal of Mineral Processing, 76(3), 143-147 https://doi.org/10.1016/j.minpro.2004.08.017 [Google Scholar]
  33. Si-fu WANG, C. WEI, Zhi-gan DENG, Cun-xiong LI, Xin-bing LI, Jun WU, Ming-shuang WANG, Fan ZHANG, Extraction of molybdenum and nickel from Ni–Mo ore by pressure acid leaching, Transactions of Nonferrous Metals Society of China, 23(10), 3083-3088 (2013) https://doi.org/10.1016/S1003-6326(13)62837-X [CrossRef] [Google Scholar]
  34. V.G. Mineeva, Agrochemistion Tutorial (2017) [Google Scholar]
  35. O. Smirnova, A. Plusnin, Problem environmental condition, 180 (2013) [Google Scholar]
  36. Russian Standard: GN 2.1.5.1315-03. Limit allowable concentrations of chemicals in the water of water facilities of economic and drinking and cultural water use, Bulletin of regulations of the federal executive authorities, 44, 2013 [Google Scholar]
  37. I. Bardamova, Cleaning of mine waters by natural sorbents of the deposits of the Baikal region, Priorities and features of the development of the Baikal region. Materials V Interd. scientific practice. dedicated to the 350th anniversary of Buryatia’s voluntary accession to the Russian state, 144-145, Ulan-Ude (2011) [Google Scholar]
  38. I. Bardamova, S. Doroshkevich, Use of natural sorbents in the scheme of purification of mine waters of the sulphide-tungsten deposit Kholtoson, Collection of works of conf. Sergeyev’s readings. Geoecological safety of mineral development, 219-223 (2017) [Google Scholar]
  39. I. Bardamova, Use of Kholinsky zeolite tuf for cleaning mine waters, Geology and mineral resources of north-eastern Russia: mat-la VIII all-Russian scientific practice, Conf., 207-210 Yakutsk, http://diamond.ysn.ru/wp-content/pdf/Sbornik-VNPK-2018-II.pdf (Last accessed 30.08.2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.