Open Access
Issue |
E3S Web Conf.
Volume 210, 2020
Innovative Technologies in Science and Education (ITSE-2020)
|
|
---|---|---|
Article Number | 06008 | |
Number of page(s) | 11 | |
Section | Livestock and Veterinary | |
DOI | https://doi.org/10.1051/e3sconf/202021006008 | |
Published online | 04 December 2020 |
- E. Rowe, M. S. Dawkins, S. G. Gebhardt-Henrich, Animals (Basel), A Systematic Review of Precision Livestock Farming in the Poultry Sector: Is Technology Focussed on Improving Bird Welfare?, 8(1), 4562 (2018) doi: 10.1038/s41598-018-22604-2 [Google Scholar]
- M. Goodarzi, S. Nanekarani, N. Landy, Asian Pacific Journal of Tropical Medicine, Effect of dietary supplementation with onion (Allium cepa L.) on performance, carcass traits and intestinal microflora composition in broiler chickens, 4, 297-301 (2014) doi: 10.1016/S2222-1808(14)60459-X [CrossRef] [Google Scholar]
- P. Shokryazdan, M. F. Jahromi, J. B. Liang, Y. W. Ho, Journal of the American College of Nutrition, Probiotics: From Isolation to Application, 36(8), 666-676 (2017) doi: 10.1080/07315724.2017.1337529 [CrossRef] [PubMed] [Google Scholar]
- E. Angelakis, Microbial pathogenesis, Weight gain by gut microbiota manipulation in productive animals, 106, 162-170 (2017) doi: 10.1016/j.micpath.2016.11.002 [CrossRef] [PubMed] [Google Scholar]
- I. Giannenas, E. Bonos, I. Skoufos, A. Tzora, I. Stylianaki, D. Lazari, A. Tsinas, E. Christaki, P. Florou-Paneri, British Poultry Science, Effect of herbal feed additives on performance parameters, intestinal microbiota, intestinal morphology and meat lipid oxidation of broiler chickens, 59(5), 545-553 (2018) doi: 10.1080/00071668.2018.1483577 [CrossRef] [PubMed] [Google Scholar]
- U. Gadde, W. Kim, S. Oh, Hyun S. Lillehoj, Animal Health Research Reviews, Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review, 18(1), 26-45 (2017) doi: 10.1017/S1466252316000207 [CrossRef] [PubMed] [Google Scholar]
- Y. Nami, R. V. Bakhshayesh, H. M. Jalaly, H. Lotfi, S. Eslami, M. A. Hejazi, Frontiers in Microbiology, Probiotic Properties of Enterococcus Isolated From Artisanal Dairy Products, 10, 30-43, (2019), doi: 10.3389/fmicb.2019.00300 [CrossRef] [PubMed] [Google Scholar]
- H. Hanchi, W. Mottawea, K. Sebei, R. Hammami, Frontiers in Microbiology, The Genus Enterococcus: Between Probiotic Potential and Safety Concerns. An Update, 9, 1–16 (2019) doi: 10.3389/fmicb.2018.01791 [CrossRef] [Google Scholar]
- D. Song, Y. W. Wang, Z. X. Lu, W. W. Wang, H. J. Miao, H. Zhou, L. Wang, A. K. Li, Poultry Science, Effects of dietary supplementation of microencapsulated Enterococcus faecalis and the extract of Camellia oleifera seed on laying performance, egg quality, serum biochemical parameters, and cecal microflora diversity in laying hens, 7, 2880–2887 (2019) doi: 10.3382/ps/pez033 [CrossRef] [Google Scholar]
- O. B. Braïek, S. Smaoui, Biomed Research International, Enterococci: Between Emerging Pathogens and Potential Probiotics, 1, 1–13 (2019) doi: 10.1155/2019/5938210 [CrossRef] [Google Scholar]
- Y. Wu, W. Zhen, Y. Geng, Z. Wang, Y. Guo, Poultry Science, Effects of dietary Enterococcus faecium NCIMB 11181 supplementation on growth performance and cellular and humoral immune responses in broiler chickens, 1, 150–163 (2019) doi: 10.3382/ps/pey368 [CrossRef] [Google Scholar]
- T. M. Pashkova, A. S. Vasilchenko, Y. A. Khlopko, E. E. Kochkina, O. L. Kartashova, M. V. Sycheva, Genome Announcements, Genome Sequence of Enterococcus faecium Strain ICIS 96 Demonstrating Intermicrobial Antagonism Associated with Bacteriocin Production, 6(10), (2018) doi: 10.1128/genomeA.00126-18 [CrossRef] [Google Scholar]
- A. Zheng, J. Luo, K. Meng, J. Li, L. W. Bryden, W. Chang, S. Zhang, L. X. N Wang, G. Liu, B. Yao, BMC Genomics, Probiotic (Enterococcus faecium) induced responses of the hepatic proteome improves metabolic efficiency of broiler chickens (Gallus gallus), 17, 89 (2016) doi: 10.1186/s12864-016-2371-5 [CrossRef] [PubMed] [Google Scholar]
- B. C. Mulukutla, A. Yongky, T. Le, D. G. Mashek, W.-S. Hu, Trends in Biotechnology, Regulation of Glucose Metabolism - A Perspective From Cell Bioprocessing, 34(8), 638-651 (2016) doi: 10.1016/j.tibtech.2016.04.012 [CrossRef] [PubMed] [Google Scholar]
- T. J. Wester, G. Kraft, D. Dardevet, S. Polakof, I. Ortigues-Marty, D. Rémond, I. Savary-Auzeloux, Nutrition Research Reviews, Nutritional regulation of the anabolic fate of amino acids within the liver in mammals: concepts arising from in vivo studies, 28(1), 22-41 (2015) doi: 10.1017/S0954422415000013 [CrossRef] [PubMed] [Google Scholar]
- N. Schormann, K. Hayden, P. Lee, S. Banerjee, D. Chattopadhyay, Protein Science, An overview of structure, function, and regulation of pyruvate kinases, 28(10), 1771-1784 (2019) doi: 10.1002/pro.3691 [CrossRef] [Google Scholar]
- F. R. Maxfield, G. van Meer, Current Opinion in Cell Biology, Cholesterol, the central lipid of mammalian cells, 22(4), 422–429 (2010) doi: 10.1016/j.ceb.2010.05.004 [CrossRef] [PubMed] [Google Scholar]
- L.-G. Ooi, M.-T. Liong, International Journal of Molecular Sciences, Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings, 11, 2499-2522 (2010) doi: 10.3390/ijms11062499 [CrossRef] [PubMed] [Google Scholar]
- X. Zhao, Y. Guo, S. Guo, J. Tan, Applied Microbiology and Biotechnology, Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens, 97, 6477–6488 (2013) doi: 10.1007/s00253-013-4970-2 [CrossRef] [Google Scholar]
- H. Yamamoto, T. Takada, Y. Yamanashi, M. Ogura, Y. Masuo, M. Harada-Shiba, H. Suzuki, Scientific Reports, VLDL/LDL acts as a drug carrier and regulates the transport and metabolism of drugs in the body, 7(1), 633 (2017) doi: 10.1038/s41598-017-00685-9 [CrossRef] [PubMed] [Google Scholar]
- C. Röhrl, H. Stangl, Wiener Medizinische Wochenschrift, Cholesterol metabolism – physiological regulation and pathophysiological deregulation by the endoplasmic reticulum, 168(11), 280–285 (2018) doi: 10.1007/s10354-018-0626-2 [CrossRef] [Google Scholar]
- V. Tayeri, A. Seidavi, L. Asadpour, C. J. C. Phillips, Veterinary Research Communications, A comparison of the effects of antibiotics, probiotics, synbiotics and prebiotics on the performance and carcass characteristics of broilers, 42(3), 195-207 (2018), doi: 10.1007/s11259-018-9724-2 [CrossRef] [PubMed] [Google Scholar]
- Z. F. Zhang, I. H. Kim, Journal of Animal Science, Effects of probiotic supplementation in different energy and nutrient density diets on performance, egg quality, excreta microflora, excreta noxious gas emission, and serum cholesterol concentrations in laying hens, 91(10), 4781-4787 (2013) doi: 10.2527/jas.2013-6484 [CrossRef] [PubMed] [Google Scholar]
- M. Capcarova, L. Chmelnicna, A. Kolesarova, P. Massanyi, J. Kovacik, British Poultry Science, Effects of Enterococcus faecium M 74 strain on selected blood and production parameters of laying hens, 51(5), 614-20 (2010) doi: 10.1080/00071668.2010.513961 [CrossRef] [PubMed] [Google Scholar]
- J. W. Park, J. S. Jeong, S. I. Lee, I. H. Kim Poultry Science, Effect of dietary supplementation with a probiotic (Enterococcus faecium) on production performance, excreta microflora, ammonia emission, and nutrient utilization in ISA brown laying hens, 95(12), 2829-2835 (2016) doi: 10.3382/ps/pew241 [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.