Open Access
Issue
E3S Web Conf.
Volume 210, 2020
Innovative Technologies in Science and Education (ITSE-2020)
Article Number 07005
Number of page(s) 9
Section Fish Farming
DOI https://doi.org/10.1051/e3sconf/202021007005
Published online 04 December 2020
  1. A. J. Lotka, Contribution to the energetics of evolution, Proc. Natl. Acad. Sci. 8, 147-150 (1922) DOI:10.1073/pnas.8.6.147 [Google Scholar]
  2. V. Volterra, Variations and fluctuations of the number of individuals in animal species living together, Rapp. P. – V. Reun. Cons. Int. Explor. Mer. 3, 3-51 (1928) DOI:10.1093/icesjms/3.1.3 [CrossRef] [Google Scholar]
  3. G. I. Marchuk, A. S. Sarkisyan Mathematical modeling of ocean circulation, 304 (Moscow, Nauka, 1988) [CrossRef] [Google Scholar]
  4. R. V. Ozmidov, Diffusion of impurities in the ocean, 278, (Leningrad, Hydrometeoizdat, 1986) [Google Scholar]
  5. G. F. Gause, Experimental studies on the struggle for existence: 1. Mixed population of two species of yeast, Journal of Experimental Biology, 9, 389-402 (1932) [Google Scholar]
  6. E. A. Mitscherlich, Das Gesert des Minimums und das Gesetz des abnehmenden Bodenertrags, 595 (Landw, Jahrb, 1909) [Google Scholar]
  7. G. G. Vinberg, Some results of practical application of production-hydrobiological methods, Production of populations and communities of aquatic organisms and methods of its study. Sverdlovsk: Ural center of the USSR Academy of Sciences, 13-18 (1985) [Google Scholar]
  8. I. I. Vorovich, A. S. Gorelov, A. B. Gorstko, Yu. A. Dombrovsky, Yu. A. Zhdanov, F. A. Surkov, L. V. Epstein, Rational use of water resources of the Azov sea basin: mathematical models, 360 (Moscow, Nauka, 1981) [Google Scholar]
  9. H. T. Odum, System Ecology, 644 (New York, Wiley, 1983) [Google Scholar]
  10. A. I. Abakumov, Signs of stability of water ecosystems in mathematical models, Proceedings Of the Institute of system analysis of the Russian Academy of Sciences. System analysis of the problem of sustainable development, 54, 49-60 (Moscow, ISA RAS, 2010) [Google Scholar]
  11. S. E. Jorgensen, H. Mejer, M. Firiis, Examination of a lake model, Ecological Modelling, 4, 253-278 (1978) [CrossRef] [Google Scholar]
  12. N. D. Panasenko, A. I. Sukhinov, Using multichannel satellite images for recognition of “ bloom” processes in shallow water on the example of the Аzov Sea, Topical issues and innovative technologies in the development of geographical sciences collection of works of the All-Russian Scientific Conference, 615-618 (2020) [Google Scholar]
  13. V. B. Kashnin, A. I. Sukhinin, Remote sensing of the Earth from space. Digital Image Processing: A Tutorial, 264 (Moscow, Logos, 2001) [Google Scholar]
  14. A. L. Leontyev, A. V. Nikitina, M. I. Chumak, Application of assimilation and filtration methods for satellite water sensing data for plankton population evolution processes predictive modelling, Computational Mathematics and Information Technologies, 1(1), 1-11 (2020) [Google Scholar]
  15. O. Yu. Lavrova, D. M. Soloviev, A. Ya. Strochkov, V. D. Shendrik, Satellite monitoring of intense algal blooms in the Rybinsk reservoir, Modern problems of remote sensing of the Earth from space, 11(3), 54–72 (2014) [Google Scholar]
  16. The official website of NASA Worldview, http://worldview.earthdata.nasa.gov (Last accessed 24.06.2020) [Google Scholar]
  17. The official website of Roscosmos Geoportal, https://www.gptl.ru (Last accessed 24.06.2020) [Google Scholar]
  18. R. S. Gonzalez, R. E. Woodsue, Digital image processing, 1081 (Moscow, Technosphere, 2012) [Google Scholar]
  19. U. Pret, Digital image processing, 480 (Moscow, Mir, 1982) [Google Scholar]
  20. R. Kirsch, Computer determination of the constituent structure of biological images, Computers and Biomedical Research, 4(3), 315–328 (1971) DOI: 10.1016/0010-4809 (71) 90034-6 [CrossRef] [Google Scholar]
  21. T. Maenpaa, The local binary pattern approach to texture analysis – Extensions and Applications (Oulu University Press, 2003) [Google Scholar]
  22. V. I. Petruk, A. V. Samorodov, I. N. Spiridonov, Application of local binary patterns to solving the problem of face recognition. Bulletin of the Moscow State Technical University. N.E. Bauman. Series: Instrumentation, 58-63 (2011) [Google Scholar]
  23. A. A. Sukhinov, G. B. Ostrobrod, Efficient Face Detection on Epiphany Multicore Processor. Computational Mathematics and Information Technologies. Electronic journal, 1(1), 113-127 (2017) [Google Scholar]
  24. N. D. Panasenko, M. Ganzhur, N. Dyachenko, O. Smirnova, A. Poluyan, Recognition of “flowering” processes on the base of remote sensing data in shallow water ponds on the example of the Azov Sea, E3S Web of Conferences, 175, 12013 (2020) [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.