Open Access
E3S Web Conf.
Volume 210, 2020
Innovative Technologies in Science and Education (ITSE-2020)
Article Number 11005
Number of page(s) 18
Section Environmental Planning and Policy
Published online 04 December 2020
  1. M. Closset, S. Feindouno, P. Guillaumont, C. Simonet, “A Physical Vulnerability to Climate Change Index: Which are the most vulnerable developing countries?” Fond. pour les études Rech. sur le développement Int., 213, 1–53 (2018) [Google Scholar]
  2. IPCC, “Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B.,]” Cambridge Univ. Press. Cambridge, United Kingdom New York, NY, USA, 1, 1-32 (2014) [Google Scholar]
  3. D. McEntire, C. G. Crocker, E. Peters, “Addressing vulnerability through an integrated approach,” Int. J. Disaster Resil. Built Environ., 1(1), 50–64 (2010) [CrossRef] [Google Scholar]
  4. J. R. Hernández, “Society, Environment, Vulnerability, and Climate Change in Latin America,” Lat. Am. Perspect., 43(4), 29–42 (2016) doi: 10.1177/0094582X16641264 [CrossRef] [Google Scholar]
  5. P. Alagidede, G. Adu, P. B. Frimpong, “The effect of climate change on economic growth: evidence from Sub-Saharan Africa,” Environ. Econ. Policy Stud., 18(3), 417–436 (2016) doi: 10.1007/s10018-015-0116-3 [CrossRef] [Google Scholar]
  6. P. Reddy, Climate resilient agriculture for ensuring food security, 53(1) (2015) [CrossRef] [Google Scholar]
  7. M. Lackner, W. Chen, T. Suzuki, Handbook of Climate Change Mitigation and Adaptation (2016) [Google Scholar]
  8. FAO, World Economic Situation and Prospects (2019) [Google Scholar]
  9. P. Carmody, et al., New realities, new challenges: new opportunities for tomorrow ’ s generation, 21(1) (2015) [Google Scholar]
  10. R. T. Wilson, B. Partners, Z. Fre, “Agriculture in Eritrea: Roots of disaster and routes to development Agriculture in Eritrea:,” (2018) [Google Scholar]
  11. M. Debesai, “Rural household income diversification in developing countries: A Case study of Eritrea,” E3S Web Conf., 175, 13014 (2020) doi: 10.1051/e3sconf/202017513014 [CrossRef] [Google Scholar]
  12. MLWE, “THE STATE OF ERITREA FOR THE GREAT GREEN WALL INITIATIVE (GGWI),” no. October 2012 (2015) [Google Scholar]
  13. A. Jalloh, G. C. Nelson, T. S. Thomas, and H. Roy-macauley, East African Agriculture and Climate Change A Comprehensive Analysis, IFPRI (2013) [Google Scholar]
  14. M. B. Hahn, A. M. Riederer, S. O. Foster, “The Livelihood Vulnerability Index: A pragmatic approach to assessing risks from climate variability and change — A case study in Mozambique,” 19(1), 74–88 (2009) doi: 10.1016/J.GLOENVCHA.2008.11.002 [Google Scholar]
  15. M. Nelitz, S. Boardley, and R. Smith, “Tools for Climate Change Vulnerability Assessments for Watersheds,” 125 (2013) [Google Scholar]
  16. G. Tesso, “Individual level vulnerability to climate change impact among crop dependent communities of western Ethiopia,” Agric. Econ. Dev., 2, 356–370 (2013) [Google Scholar]
  17. G. Tesso, B. Emana, and M. Ketema, “Analysis of vulnerability and resilience to climate change induced shocks in North Shewa, Ethiopia,” Agric. Sci., 3(6), 871–888 (2012) doi: 10.4236/as.2012.36106 [Google Scholar]
  18. T. T. Deressa, C. Ringler, R. M. Hassan, “Factors affecting the choices of coping strategies for climate extremes: The case of farmers in the Nile Basin of Ethiopia,” IFPRI Discuss. Pap., 1032, 25 (2010) [Google Scholar]
  19. B. I. A. Madu, “Spatial Vulnerability of Rural Households to Climate Change in Nigeria: Implications for Initial Security,” Clim. Chang. African Polit. Stab., 3(4), 79-98 (2012) [Google Scholar]
  20. P. Copy, U. Proofs, Panel on Strategies and Methods for Climate-Related Decision Support Committee on the Human Dimensions of Global Change Division of Behavioral and Social Sciences and Education (2010) [Google Scholar]
  21. D. T. Adu, J. K. M. Kuwornu, H. Anim-Somuah, N. Sasaki, “Application of livelihood vulnerability index in assessing smallholder maize farming households’ vulnerability to climate change in Brong-Ahafo region of Ghana,” Kasetsart J. Soc. Sci., 39(1), 22–32 (2018) [CrossRef] [Google Scholar]
  22. J. Panthi, S. Aryal, P. Dahal, P. Bhandari, “Livelihood vulnerability approach to assessing climate change impacts on mixed agro-livestock smallholders around the Gandaki River Basin in Nepal,” Reg. Environ. Chang., 16, 1121–1132 (2016) doi: 10.1007/s10113-015-0833-y [CrossRef] [Google Scholar]
  23. Ahsan, J. Warner, “The socioeconomic vulnerability index: A pragmatic approach for assessing climate change led risks–A case study in the south-western coastal Bangladesh,” Elsevier, 8, 32-49 (2014) doi: 10.1016/j.ijdrr.2013.12.009 [Google Scholar]
  24. P. M. Etwire, “Application of Livelihood Vulnerability Index in Assessing Vulnerability to Climate Change and Variability in Northern Ghana Application of Livelihood Vulnerability Index in Assessing Vulnerability to Climate Change and Variability in Northern Ghana”, Journal of Environment and Earth Science, 3(2) (2013) [Google Scholar]
  25. J. Y. Gerlitz, M. Macchi, N. Brooks, R. Pandey, S. Banerjee, and S. K. Jha, “The Multidimensional Livelihood Vulnerability Index–an instrument to measure livelihood vulnerability to change in the Hindu Kush Himalayas,” Clim. Dev., 9(2), 124–140 (2017) [CrossRef] [Google Scholar]
  26. C. Ludena, S. Yoon, “Local vulnerability indicators and adaptation to climate change: A survey. Inter-American Development Bank, Technical Note No. 857,” no. Technical Note, 857, 51 (2015) [Google Scholar]
  27. K. Van Der Geest, K. Warner, “Vulnerability, Coping and Loss and Damage from Climate Events,” Hazards, Risks and Disasters in Societ, 121–144 (2015) doi: 10.1016/B978-0-12-396451-9.00008-1 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.